The Borsuk-Ulam theorem for general spaces

被引:0
|
作者
P. L. Q. Pergher
D. de Mattos
E. L. dos Santos
机构
[1] Universidade Federal de São Carlos,Departamento de Matemática
来源
Archiv der Mathematik | 2003年 / 81卷
关键词
Primary 55M20; Secondary 55M35;
D O I
暂无
中图分类号
学科分类号
摘要
Let X, Y be topological spaces and $T : X \rightarrow X$ a free involution. In this context, a question that naturally arises is whether or not all continuous maps $f : X \rightarrow Y$ have a T-coincidence point, that is, a point $x \in X$ with $f (x) = f (T (x))$. If additionally Y is equipped with a free involution $S : Y \rightarrow Y$ , another question is concerning the existence of equivariant maps $f : (X, T) \rightarrow (Y, S)$. In this paper we obtain results of this nature under cohomological (homological) conditions on the spaces X and Y.
引用
收藏
页码:96 / 102
页数:6
相关论文
共 50 条