An estimate for the scalar curvature of constant mean curvature hypersurfaces in space forms

被引:0
|
作者
Luis J. Alías
S. Carolina García-Martínez
机构
[1] Universidad de Murcia,Departamento de Matemáticas
来源
Geometriae Dedicata | 2012年 / 156卷
关键词
Constant mean curvature; Scalar curvature; Ricci curvature; Second fundamental form; Omori-Yau maximum principle; 53C40; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we derive a sharp estimate for the supremum of the scalar curvature (or, equivalently, the infimum of the squared norm of the second fundamental form) of a constant mean curvature hypersurface with two principal curvatures immersed into a Riemannian space form of constant curvature. Our results will be an application of the generalized Omori-Yau maximum principle, following the approach by Pigola et al. (Memoirs Am Math Soc 822, 2005).
引用
收藏
页码:31 / 47
页数:16
相关论文
共 50 条