SCALAR CURVATURE OF HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN A SPHERE

被引:7
|
作者
Cheng, Qing-Ming [1 ]
He, Yijun [2 ]
Li, Haizhong [3 ]
机构
[1] Saga Univ, Dept Math, Fac Sci & Engn, Saga 8408502, Japan
[2] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
[3] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
MINIMAL HYPERSURFACES; SPACE-FORMS;
D O I
10.1017/S0017089509005187
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be an n-dimensional closed hypersurface with constant mean curvature H satisfying vertical bar H vertical bar <= epsilon(n) in a unit sphere Sn+1, n <= 7, and S the square of the length of the second fundamental form of M. There exists a constant delta(n, H) > 0, which depends only on n and H, such that if S-0 <= S <= S-0 + delta(n, H), then S equivalent to S-0 and M is isometric to a Clifford hypersurface, where epsilon(n) is a sufficiently small constant depending on n and S-0 + n(3)/2(n-1) H-2 + n(n-2)/2(n-1) root n(2)H(4) + 4(n - 1)H-2.
引用
收藏
页码:413 / 423
页数:11
相关论文
共 50 条