Phase Portraits of Uniform Isochronous Centers with Homogeneous Nonlinearities

被引:0
|
作者
Jaume Llibre
Claudia Valls
机构
[1] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[2] Universidade de Lisboa,Departamento de Matemática, Instituto Superior Técnico
关键词
Polynomial vector field; Uniform isochronous center; Phase portrait; Poincaré disc; Primary 34A05; Secondary 34C05; 37C10;
D O I
暂无
中图分类号
学科分类号
摘要
We classify the phase portraits in the Poincaré disc of the differential equations of the form x′=−y+xf(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x^{\prime } = -y + x f(x,y)$\end{document}, ẏ=x+yf(x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot y =x + y f(x,y)$\end{document} where f(x,y) is a homogeneous polynomial of degree n − 1 when n = 2,3,4,5, and f has only simple zeroes. We also provide some general results on these uniform isochronous centers for all n ≥ 2. All our results have been revised by the program P4; see Chaps. 9 and 10 of Dumortier et al. (UniversiText, Springer-Verlag, New York, 2006).
引用
收藏
页码:319 / 332
页数:13
相关论文
共 50 条
  • [21] A survey of isochronous centers
    Chavarriga J.
    Sabatini M.
    Qualitative Theory of Dynamical Systems, 1999, 1 (1) : 1 - 70
  • [22] Phase portrait of Hamiltonian systems with homogeneous nonlinearities
    Gasull, A
    Guillamon, A
    Mañosa, V
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (04) : 679 - 707
  • [23] LINEARIZATION OF ISOCHRONOUS CENTERS
    MARDESIC, P
    ROUSSEAU, C
    TONI, B
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (01) : 67 - 108
  • [24] Centers and Isochronous Centers of Lienard Systems
    Amel'kin, V. V.
    Rudenok, A. E.
    DIFFERENTIAL EQUATIONS, 2019, 55 (03) : 283 - 293
  • [25] The phase portrait of all polynomial Liénard isochronous centers
    Llibre, Jaume
    Valls, Claudia
    CHAOS SOLITONS & FRACTALS, 2024, 180
  • [26] Phase portraits of reversible linear differential systems with cubic homogeneous polynomial nonlinearities having a non-degenerate center at the origin
    Buzzi C.A.
    Llibre J.
    Medrado J.C.R.
    Qualitative Theory of Dynamical Systems, 2009, 7 (2) : 369 - 403
  • [27] Linear type global centers of linear systems with cubic homogeneous nonlinearities
    Johanna D. García-Saldaña
    Jaume Llibre
    Claudia Valls
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 771 - 785
  • [28] Global Phase Portraits of Kukles Differential Systems with Homogeneous Polynomial Nonlinearities of Degree 6 Having a Center and Their Small Limit Cycles
    Llibre, Jaume
    da Silva, Mauricio Fronza
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (03):
  • [29] LIMIT CYCLES FOR TWO CLASSES OF PLANAR POLYNOMIAL DIFFERENTIAL SYSTEMS WITH UNIFORM ISOCHRONOUS CENTERS
    Huang, Bo
    Niu, Wei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (03): : 943 - 961
  • [30] Linear type global centers of linear systems with cubic homogeneous nonlinearities
    Garcia-Saldana, Johanna D.
    Llibre, Jaume
    Valls, Claudia
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 771 - 785