Van der Waals heterostructures

被引:2
|
作者
Barnes, Natalie
机构
[1] Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid
[2] Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA
[3] California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA
[4] Department of Physics and Astronomy, Iowa State University, Ames, IA
[5] Ames Laboratory, US Department of Energy, Iowa State University, Ames, IA
[6] Department of Physics, University of South Florida, Tampa, FL
[7] Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing
[8] GISC, Departamento de Física de Materiales, Universidad Complutense de Madrid, Madrid
[9] Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE
[10] Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE
[11] Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE
来源
NATURE REVIEWS METHODS PRIMERS | 2022年 / 2卷 / 01期
基金
欧洲研究理事会; 中国国家自然科学基金; 美国国家科学基金会;
关键词
D O I
10.1038/s43586-022-00151-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This PrimeView highlights the fabrication of van der Waals heterostructures using top-down and bottom-up processes.
引用
收藏
页数:1
相关论文
共 50 条
  • [31] The Coulomb interaction in van der Waals heterostructures
    Le Huang
    MianZeng Zhong
    HuiXiong Deng
    Bo Li
    ZhongMing Wei
    JingBo Li
    SuHuai Wei
    [J]. Science China(Physics,Mechanics & Astronomy), 2019, (03) : 106 - 111
  • [32] Ultrafast dynamics in van der Waals heterostructures
    Chenhao Jin
    Eric Yue Ma
    Ouri Karni
    Emma C. Regan
    Feng Wang
    Tony F. Heinz
    [J]. Nature Nanotechnology, 2018, 13 : 994 - 1003
  • [33] Unfolding the band structure of van der Waals heterostructures
    Vailakis, Georgios
    Kopidakis, Georgios
    [J]. PHYSICAL REVIEW MATERIALS, 2023, 7 (02)
  • [34] Evidence for moire excitons in van der Waals heterostructures
    Kha Tran
    Moody, Galan
    Wu, Fengcheng
    Lu, Xiaobo
    Choi, Junho
    Kim, Kyounghwan
    Rai, Amritesh
    Sanchez, Daniel A.
    Quan, Jiamin
    Singh, Akshay
    Embley, Jacob
    Zepeda, Andre
    Campbell, Marshall
    Autry, Travis
    Taniguchi, Takashi
    Watanabe, Kenji
    Lu, Nanshu
    Banerjee, Sanjay K.
    Silverman, Kevin L.
    Kim, Suenne
    Tutuc, Emanuel
    Yang, Li
    MacDonald, Allan H.
    Li, Xiaoqin
    [J]. NATURE, 2019, 567 (7746) : 71 - +
  • [35] Optically Active MXenes in Van der Waals Heterostructures
    Purbayanto, Muhammad A. K.
    Chandel, Madhurya
    Birowska, Magdalena
    Rosenkranz, Andreas
    Jastrzebska, Agnieszka M.
    [J]. ADVANCED MATERIALS, 2023, 35 (42)
  • [36] Fabrication of van der Waals heterostructures through direct growth of rhenium disulfide on van der Waals surfaces
    Jeon, Jaeho
    Choi, Haeju
    Baek, Sungpyo
    Choi, Seunghyuk
    Cho, Jeong Ho
    Lee, Sungjoo
    [J]. APPLIED SURFACE SCIENCE, 2021, 544
  • [37] Moire excitons in defective van der Waals heterostructures
    Guo, Hongli
    Zhang, Xu
    Lu, Gang
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (32)
  • [38] Hot carrier photovoltaics in van der Waals heterostructures
    Paul, Kamal Kumar
    Kim, Ji-Hee
    Lee, Young Hee
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (03) : 178 - 192
  • [39] Excitons and Trions in Bilayer van der Waals Heterostructures
    Semina, M. A.
    [J]. PHYSICS OF THE SOLID STATE, 2019, 61 (11) : 2218 - 2223
  • [40] Viscous hydrodynamics of excitons in van der Waals heterostructures
    Mantsevich, V.N.
    Glazov, M.M.
    [J]. Physical Review B, 2024, 110 (16)