Deep learning: systematic review, models, challenges, and research directions

被引:0
|
作者
Tala Talaei Khoei
Hadjar Ould Slimane
Naima Kaabouch
机构
[1] University of North Dakota,School of Electrical Engineering and Computer Science
来源
关键词
Artificial intelligence; Neural networks; Deep learning; Supervised learning; Unsupervised learning; Reinforcement learning; Online learning; Federated learning; Transfer learning;
D O I
暂无
中图分类号
学科分类号
摘要
The current development in deep learning is witnessing an exponential transition into automation applications. This automation transition can provide a promising framework for higher performance and lower complexity. This ongoing transition undergoes several rapid changes, resulting in the processing of the data by several studies, while it may lead to time-consuming and costly models. Thus, to address these challenges, several studies have been conducted to investigate deep learning techniques; however, they mostly focused on specific learning approaches, such as supervised deep learning. In addition, these studies did not comprehensively investigate other deep learning techniques, such as deep unsupervised and deep reinforcement learning techniques. Moreover, the majority of these studies neglect to discuss some main methodologies in deep learning, such as transfer learning, federated learning, and online learning. Therefore, motivated by the limitations of the existing studies, this study summarizes the deep learning techniques into supervised, unsupervised, reinforcement, and hybrid learning-based models. In addition to address each category, a brief description of these categories and their models is provided. Some of the critical topics in deep learning, namely, transfer, federated, and online learning models, are explored and discussed in detail. Finally, challenges and future directions are outlined to provide wider outlooks for future researchers.
引用
收藏
页码:23103 / 23124
页数:21
相关论文
共 50 条
  • [1] Deep learning: systematic review, models, challenges, and research directions
    Talaei Khoei, Tala
    Ould Slimane, Hadjar
    Kaabouch, Naima
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (31): : 23103 - 23124
  • [2] A Systematic Review of Using Deep Learning in Aphasia: Challenges and Future Directions
    Wang, Yin
    Cheng, Weibin
    Sufi, Fahim
    Fang, Qiang
    Mahmoud, Seedahmed S.
    [J]. COMPUTERS, 2024, 13 (05)
  • [3] Deep learning techniques for solar tracking systems: A systematic literature review, research challenges, and open research directions
    Phiri, Musa
    Mulenga, Mwenge
    Zimba, Aaron
    Eke, Christopher Ifeanyi
    [J]. SOLAR ENERGY, 2023, 262
  • [4] Machine Learning: Models, Challenges, and Research Directions
    Khoei, Tala Talaei
    Kaabouch, Naima
    [J]. FUTURE INTERNET, 2023, 15 (10)
  • [5] Systematic Review of Deep Learning and Machine Learning Models in Biofuels Research
    Ardabili, Sina
    Mosavi, Amir
    Varkonyi-Koczy, Annamaria R.
    [J]. ENGINEERING FOR SUSTAINABLE FUTURE, 2020, 101 : 19 - 32
  • [6] Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions
    Nadeem, Muhammad Waqas
    Goh, Hock Guan
    Hussain, Muzammil
    Liew, Soung-Yue
    Andonovic, Ivan
    Khan, Muhammad Adnan
    [J]. SENSORS, 2022, 22 (18)
  • [7] A Current Review of Machine Learning and Deep Learning Models in Oral Cancer Diagnosis: Recent Technologies, Open Challenges, and Future Research Directions
    Dixit, Shriniket
    Kumar, Anant
    Srinivasan, Kathiravan
    [J]. DIAGNOSTICS, 2023, 13 (07)
  • [8] Image steganalysis using deep learning: a systematic review and open research challenges
    Farooq N.
    Selwal A.
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (06) : 7761 - 7793
  • [9] Progress in Multivariate Cryptography: Systematic Review, Challenges, and Research Directions
    Dey, Jayashree
    Dutta, Ratna
    [J]. ACM COMPUTING SURVEYS, 2023, 55 (12)
  • [10] Automatic Image Annotation Based on Deep Learning Models: A Systematic Review and Future Challenges
    Adnan, Myasar Mundher
    Rahim, Mohd Shafry Mohd
    Rehman, Amjad
    Mehmood, Zahid
    Saba, Tanzila
    Naqvi, Rizwan Ali
    [J]. IEEE ACCESS, 2021, 9 : 50253 - 50264