Narrow orthogonally additive operators

被引:0
|
作者
Marat Pliev
Mikhail Popov
机构
[1] Russian Academy of Sciences,South Mathematical Institute
[2] Chernivtsi National University,Department of Applied Mathematics
来源
Positivity | 2014年 / 18卷
关键词
Narrow operators; C-compact operators; Orthogonally additive operators; Abstract Uryson operators; Banach lattices; Primary 47H30; Secondary 47H99;
D O I
暂无
中图分类号
学科分类号
摘要
We generalize the notion of narrow operators to nonlinear maps on vector lattices. The main objects are orthogonally additive operators and, in particular, abstract Uryson operators. Most of the results extend known theorems obtained by O. Maslyuchenko, V. Mykhaylyuk and the second named author published in Positivity 13:459–495 (2009) for linear operators. For instance, we prove that every orthogonally additive laterally-to-norm continuous C-compact operator from an atomless Dedekind complete vector lattice to a Banach space is narrow. Another result asserts that the set Uonlc(E,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal U}_{on}^{lc}(E,F)$$\end{document} of all order narrow laterally continuous abstract Uryson operators is a band in the vector lattice of all laterally continuous abstract Uryson operators from an atomless vector lattice E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document} with the principal projection property to a Dedekind complete vector lattice F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F$$\end{document}. The band generated by the disjointness preserving laterally continuous abstract Uryson operators is the orthogonal complement to Unlc(E,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal U}_n^{lc}(E,F)$$\end{document}.
引用
收藏
页码:641 / 667
页数:26
相关论文
共 50 条
  • [31] The lateral order on Riesz spaces and orthogonally additive operators
    Volodymyr Mykhaylyuk
    Marat Pliev
    Mikhail Popov
    [J]. Positivity, 2021, 25 : 291 - 327
  • [32] Orthogonally Bi-additive Operators-II
    Nonna Dzhusoeva
    Madina Mazloeva
    [J]. Results in Mathematics, 2023, 78
  • [33] The lateral order on Riesz spaces and orthogonally additive operators
    Mykhaylyuk, Volodymyr
    Pliev, Marat
    Popov, Mikhail
    [J]. POSITIVITY, 2021, 25 (02) : 291 - 327
  • [34] Orthogonally Bi-additive Operators-II
    Dzhusoeva, Nonna
    Mazloeva, Madina
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (05)
  • [35] On Orthogonally Additive Operators in Lattice-Normed Spaces
    N. A. Dzhusoeva
    S. Yu. Itarova
    [J]. Mathematical Notes, 2023, 113 : 59 - 71
  • [36] On Orthogonally Additive Operators in Lattice-Normed Spaces
    Dzhusoeva, N. A.
    Itarova, S. Yu.
    [J]. MATHEMATICAL NOTES, 2023, 113 (1-2) : 59 - 71
  • [37] Order Unbounded Orthogonally Additive Operators in Vector Lattices
    Marat Pliev
    Kawtar Ramdane
    [J]. Mediterranean Journal of Mathematics, 2018, 15
  • [38] On orthogonally additive operators in C-complete vector lattices
    Erkursun-Ozcan, Nazife
    Pliev, Marat
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (01)
  • [39] DISJOINTNESS-PRESERVING ORTHOGONALLY ADDITIVE OPERATORS IN VECTOR LATTICES
    Abasov, Nariman
    Pliev, Marat
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (03): : 730 - 750
  • [40] On orthogonally additive operators in C-complete vector lattices
    Nazife Erkurşun-Özcan
    Marat Pliev
    [J]. Banach Journal of Mathematical Analysis, 2022, 16