Regular global attractors of type III thermoelastic extensible beams

被引:0
|
作者
Michele Coti Zelati
Vittorino Pata
Ramon Quintanilla
机构
[1] Indiana University,Mathematics Department
[2] Politecnico di Milano,Dipartimento di Matematica “F. Brioschi”
[3] Matemática Aplicada 2 ETSEIAT-UPC Terrassa,undefined
来源
Chinese Annals of Mathematics, Series B | 2010年 / 31卷
关键词
Type III thermoelastic extensible beam; Lyapunov functional; Global attractor; 35B41; 37B25; 74F05; 74K10;
D O I
暂无
中图分类号
学科分类号
摘要
For β ∈ ℝ, the authors consider the evolution system in the unknown variables u and α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ \begin{gathered} \partial _{tt} u + \partial _{xxxx} u + \partial _{xxt} \alpha - \left( {\beta + \left\| {\partial _x u} \right\|_{L^2 }^2 } \right)\partial _{xx} u = f, \hfill \\ \partial _{tt} \alpha - \partial _{xx} \alpha - \partial _{xxt} \alpha - \partial _{xxt} u = 0 \hfill \\ \end{gathered} \right. $$\end{document} describing the dynamics of type III thermoelastic extensible beams, where the dissipation is entirely contributed by the second equation ruling the evolution of the thermal displacement α. Under natural boundary conditions, the existence of the global attractor of optimal regularity for the related dynamical system acting on the phase space of weak energy solutions is established.
引用
收藏
页码:619 / 630
页数:11
相关论文
共 50 条
  • [31] A type III thermoelastic problem with two dissipative mechanisms
    Fernandez, Jose R.
    Quintanilla, Ramon
    APPLICABLE ANALYSIS, 2025, 104 (02) : 370 - 379
  • [32] Gevrey semigroup of the type III localized thermoelastic model
    Gomez Avalos, Gerardo
    Munoz Rivera, Jaime
    Ochoa Ochoa, Elena
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 347 : 282 - 309
  • [33] On Wavenumbers of Plane Harmonic Type III Thermoelastic Waves
    Kovalev, V. A.
    Radayev, Yu N.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2010, 10 (03): : 46 - 53
  • [34] Strong Solutions and Global Attractors for Kirchhoff Type Equation
    Chen, Xiangping
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [35] A permutation characterization of Sturm global attractors of Hamiltonian type
    Fiedler, Bernold
    Rocha, Carlos
    Wolfrum, Matthias
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (01) : 588 - 623
  • [36] Global attractors for nonclassical diffusion equations of Kirchhoff type
    Wang, Yong-Hai
    Wang, Ling-Zhi
    Journal of Donghua University (English Edition), 2012, 29 (04) : 305 - 310
  • [37] Global Attractors for Nonclassical Diffusion Equations of Kirchhoff Type
    汪永海
    王灵芝
    Journal of Donghua University(English Edition), 2012, 29 (04) : 305 - 310
  • [38] GLOBAL ATTRACTORS FOR A KIRCHHOFF TYPE PLATE EQUATION WITH MEMORY
    Yao, Xiaobin
    Ma, Qiaozhen
    Xu, Ling
    KODAI MATHEMATICAL JOURNAL, 2017, 40 (01) : 63 - 78
  • [39] Global existence and exponential stability for a contact problem between two thermoelastic beams
    Bonfanti, Giovanna
    Munoz Rivera, Jaime E.
    Naso, Maria Grazia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 186 - 202
  • [40] Birth of strange nonchaotic attractors through type III intermittency
    Venkatesan, A
    Murali, K
    Lakshmanan, M
    PHYSICS LETTERS A, 1999, 259 (3-4) : 246 - 253