Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization

被引:0
|
作者
Adrien B. Taylor
Julien M. Hendrickx
François Glineur
机构
[1] Université catholique de Louvain,ICTEAM
[2] Université catholique de Louvain,CORE
关键词
Proximal gradient method; Composite convex optimization; Convergence rates; Worst-case analysis; 90C25; 90C22; 90C20;
D O I
暂无
中图分类号
学科分类号
摘要
We study the worst-case convergence rates of the proximal gradient method for minimizing the sum of a smooth strongly convex function and a non-smooth convex function, whose proximal operator is available. We establish the exact worst-case convergence rates of the proximal gradient method in this setting for any step size and for different standard performance measures: objective function accuracy, distance to optimality and residual gradient norm. The proof methodology relies on recent developments in performance estimation of first-order methods, based on semidefinite programming. In the case of the proximal gradient method, this methodology allows obtaining exact and non-asymptotic worst-case guarantees that are conceptually very simple, although apparently new. On the way, we discuss how strong convexity can be replaced by weaker assumptions, while preserving the corresponding convergence rates. We also establish that the same fixed step size policy is optimal for all three performance measures. Finally, we extend recent results on the worst-case behavior of gradient descent with exact line search to the proximal case.
引用
收藏
页码:455 / 476
页数:21
相关论文
共 50 条
  • [1] Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization
    Taylor, Adrien B.
    Hendrickx, Julien M.
    Glineur, Francois
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (02) : 455 - 476
  • [2] On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions
    Etienne de Klerk
    François Glineur
    Adrien B. Taylor
    [J]. Optimization Letters, 2017, 11 : 1185 - 1199
  • [3] On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions
    de Klerk, Etienne
    Glineur, Francois
    Taylor, Adrien B.
    [J]. OPTIMIZATION LETTERS, 2017, 11 (07) : 1185 - 1199
  • [4] Integral Quadratic Constraints: Exact Convergence Rates and Worst-Case Trajectories
    Van Scoy, Bryan
    Lessard, Laurent
    [J]. 2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 7677 - 7682
  • [5] The exact worst-case convergence rate of the alternating direction method of multipliers
    Zamani, Moslem
    Abbaszadehpeivasti, Hadi
    de Klerk, Etienne
    [J]. MATHEMATICAL PROGRAMMING, 2024, 208 (1-2) : 243 - 276
  • [6] EXACT WORST-CASE PERFORMANCE OF FIRST-ORDER METHODS FOR COMPOSITE CONVEX OPTIMIZATION
    Taylor, Adrien B.
    Hendrickx, Julien M.
    Glineur, Francois
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (03) : 1283 - 1313
  • [7] On the Linear Convergence of a Proximal Gradient Method for a Class of Nonsmooth Convex Minimization Problems
    Zhang, Haibin
    Jiang, Jiaojiao
    Luo, Zhi-Quan
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2013, 1 (02) : 163 - 186
  • [8] The exact worst-case convergence rate of the gradient method with fixed step lengths for L-smooth functions
    Abbaszadehpeivasti, Hadi
    de Klerk, Etienne
    Zamani, Moslem
    [J]. OPTIMIZATION LETTERS, 2022, 16 (06) : 1649 - 1661
  • [9] The exact worst-case convergence rate of the gradient method with fixed step lengths for L-smooth functions
    Hadi Abbaszadehpeivasti
    Etienne de Klerk
    Moslem Zamani
    [J]. Optimization Letters, 2022, 16 : 1649 - 1661
  • [10] Alternating Proximal Gradient Method for Convex Minimization
    Shiqian Ma
    [J]. Journal of Scientific Computing, 2016, 68 : 546 - 572