Integral Quadratic Constraints: Exact Convergence Rates and Worst-Case Trajectories

被引:0
|
作者
Van Scoy, Bryan [1 ]
Lessard, Laurent [1 ,2 ]
机构
[1] Univ Wisconsin, Wisconsin Inst Discovery, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Johnson Dr, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a linear time-invariant system in discrete time where the state and input signals satisfy a set of integral quadratic constraints (IQCs). Analogous to the autonomous linear systems case, we define a new notion of spectral radius that exactly characterizes stability of this system. In particular, (i) when the spectral radius is less than one, we show that the system is asymptotically stable for all trajectories that satisfy the IQCs, and (ii) when the spectral radius is equal to one, we construct an unstable trajectory that satisfies the IQCs. Furthermore, we connect our new definition of the spectral radius to the existing literature on IQCs.
引用
收藏
页码:7677 / 7682
页数:6
相关论文
共 50 条
  • [1] Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization
    Adrien B. Taylor
    Julien M. Hendrickx
    François Glineur
    [J]. Journal of Optimization Theory and Applications, 2018, 178 : 455 - 476
  • [2] Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization
    Taylor, Adrien B.
    Hendrickx, Julien M.
    Glineur, Francois
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (02) : 455 - 476
  • [3] The exact worst-case convergence rate of the alternating direction method of multipliers
    Zamani, Moslem
    Abbaszadehpeivasti, Hadi
    de Klerk, Etienne
    [J]. MATHEMATICAL PROGRAMMING, 2024, 208 (1-2) : 243 - 276
  • [4] On the Worst-Case Disturbance of an Oscillator with Quadratic Damping by an External Force with a Given Integral
    Bolotnik, N. N.
    Korneev, V. A.
    [J]. MECHANICS OF SOLIDS, 2024, 59 (01) : 1 - 10
  • [5] Linear-quadratic worst-case control
    Juge, MK
    Bryson, AE
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1998, 21 (05) : 761 - 766
  • [6] Worst-Case Secrecy Rates in MIMOME Systems under Input and State Constraints
    Wolf, Anne
    Jorswieck, Eduard A.
    Janda, Carsten R.
    [J]. 2015 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2015,
  • [7] WORST-CASE CONVERGENCE TIMES FOR HOPFIELD MEMORIES
    FLOREEN, P
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (05): : 533 - 535
  • [8] ON THE CONVERGENCE RATE OF SOR - A WORST-CASE ESTIMATE
    OSWALD, P
    [J]. COMPUTING, 1994, 52 (03) : 245 - 255
  • [9] Worst-Case Source for Distributed Compression with Quadratic Distortion
    Shomorony, Ilan
    Avestimehr, A. Salman
    Asnani, Himanshu
    Weissman, Tsachy
    [J]. 2012 IEEE INFORMATION THEORY WORKSHOP (ITW), 2012, : 187 - 191
  • [10] Worst-case performance analysis of optimal batch control trajectories
    Ma, DL
    Chung, SH
    Braatz, RD
    [J]. AICHE JOURNAL, 1999, 45 (07) : 1469 - 1476