Nonexistence of H Theorem for Some Lattice Boltzmann Models

被引:2
|
作者
Wen-an Yong
Li-Shi Luo
机构
[1] Universität Heidelberg,IWR
[2] Old Dominion University,Department of Mathematics and Statistics
来源
关键词
Lattice Boltzmann equation; -theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we provide a set of sufficient conditions under which a lattice Boltzmann model does not admit an H theorem. By verifying the conditions, we prove that a number of existing lattice Boltzmann models does not admit an H theorem. These models include D2Q6, D2Q9 and D3Q15 athermal models, and D2Q16 and D3Q40 thermal (energy-conserving) models. The proof does not require the equilibria to be polynomials.
引用
收藏
页码:91 / 103
页数:12
相关论文
共 50 条
  • [41] A review of lattice Boltzmann models for compressible flows
    Hsu, AT
    Yang, T
    Lopez, I
    Ecer, A
    PARALLEL COMPUTATIONAL FLUID DYNAMICS: ADVANCED NUMERICAL METHODS SOFTWARE AND APPLICATIONS, 2004, : 19 - 28
  • [42] Models of plate tectonics with the Lattice Boltzmann Method
    Mora, Peter
    Morra, Gabriele
    Yuen, David A.
    ARTIFICIAL INTELLIGENCE IN GEOSCIENCES, 2023, 4 : 47 - 58
  • [43] Complete Galilean invariant lattice Boltzmann models
    Chikatamarla, Shyam S.
    Karlin, Iliya V.
    COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (1-3) : 140 - 143
  • [44] Grid refinement for entropic lattice Boltzmann models
    Dorschner, B.
    Frapolli, N.
    Chikatamarla, S. S.
    Karlin, I. V.
    PHYSICAL REVIEW E, 2016, 94 (05)
  • [45] Lattice Boltzmann models based on Gauss quadratures
    Ambrus, Victor E.
    Sofonea, Victor
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (12):
  • [46] Lattice Boltzmann models for nonlinear diffusion filtering
    Jawerth, B
    Lin, P
    Sinzinger, E
    SCALE-SPACE THEORIES IN COMPUTER VISION, 1999, 1682 : 283 - 293
  • [47] Improved Lattice Boltzmann Models for Precipitation and Dissolution
    J. Pedersen
    E. Jettestuen
    J. L. Vinningland
    A. Hiorth
    Transport in Porous Media, 2014, 104 : 593 - 605
  • [48] Lattice Boltzmann open boundaries for hydrodynamic models
    Bennett, AF
    Taylor, JR
    Chua, BS
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (01) : 89 - 111
  • [49] A class of lattice Boltzmann models with the energy equation
    Li, YX
    Xiong, SW
    Zou, XF
    NUMERICAL TREATMENT OF MULTIPHASE FLOWS IN POROUS MEDIA, 2000, 552 : 208 - 215
  • [50] Viscosity of finite difference lattice Boltzmann models
    Sofonea, V
    Sekerka, RF
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 184 (02) : 422 - 434