Milling force prediction of inclined rib with low rigidity in milling process of hollow thin-walled structural parts

被引:0
|
作者
Shengfang Zhang
Jiaheng Ma
Shuai Wang
Ziguang Wang
Fujian Ma
Zhihua Sha
机构
[1] Dalian Jiaotong University,School of Mechanical Engineering
[2] CRRC Changchun Railway Vehicles Co.,undefined
[3] Ltd.,undefined
关键词
Milling force prediction; Thin-walled structural parts; Deformation mixed prediction model; Actual feed per tooth;
D O I
暂无
中图分类号
学科分类号
摘要
In order to improve the prediction accuracy of low rigidity inclined rib milling force model in the milling process of hollow thin-walled structural parts, the static deformation of low rigidity inclined rib was solved by means of numerical analysis and finite element simulation method; moreover, the deformation mixed prediction model was established by combining general regression neural network with fruit fly optimization algorithm and cross validation algorithm to efficiently predict the dynamic deformation of low rigidity inclined rib under different parameters. Thereafter, based on this model, the dynamic feed per tooth solving model was established to predict the dynamic milling force, and it was verified by experiments. The results show that under the processing conditions of 6000 r/min, 0.14 mm/z, and 4 mm cutting width, the theoretical values of the maximum milling forces in X, Y, Z directions at the right diagonal rib position are 361 N, 788 N, and 229 N, respectively, and the experimental values are 398 N, 802 N, and 218 N, respectively. Under the processing conditions of 7000 r/min, 0.14 mm/z, and 3.5 mm cutting width, the theoretical values of the maximum milling forces in X, Y, Z directions at the right diagonal rib position are 361 N, 788 N, and 229 N, respectively, and the experimental values are 398 N, 802 N, and 218 N, respectively. The increase of cutting width leads to the increase of Y-direction force, besides, the increase of feed speed will lead to the increase of X-direction forces and Z-direction forces. The range of X-direction prediction error rate is 8.45–16.15%, Y-direction prediction error rate is 1.50–4.85%, Z-direction prediction error rate is 10.5–15.65%, and the milling force prediction error is kept below 16%.
引用
收藏
页码:815 / 830
页数:15
相关论文
共 50 条
  • [31] Force-induced deformation prediction and flexible error compensation strategy in flank milling of thin-walled parts
    Li, Weitao
    Wang, Liping
    Yu, Guang
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2021, 297
  • [32] Milling error prediction of thin-walled parts during high-speed machining
    Dong, Hui-Yue
    Ke, Ying-Lin
    Yang, Hui-Xiang
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2006, 40 (04): : 634 - 637
  • [33] On the advanced milling technology of thin-walled parts for aerospace industry
    Piska M.
    Ohnistova P.
    Piska, Miroslav (piska@fme.vubtr.cz), 1600, Springer Heidelberg : 113 - 139
  • [34] Residual stress prediction of micro-milling Inconel 718 thin-walled parts
    Lu, Xiaohong
    Xv, Guoqing
    Cong, Chen
    Gu, Han
    Liang, Steven Y.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 133 (3-4): : 1305 - 1316
  • [35] Surface Topography Prediction Model in Milling of Thin-Walled Parts Considering Machining Deformation
    Chen, Zhitao
    Yue, Caixu
    Liu, Xianli
    Liang, Steven Y.
    Wei, Xudong
    Du, Yanjie
    MATERIALS, 2021, 14 (24)
  • [36] Review of research on chatter stability in milling of thin-walled parts
    Liu, Hao
    Zhou, Yufeng
    2020 3RD WORLD CONFERENCE ON MECHANICAL ENGINEERING AND INTELLIGENT MANUFACTURING (WCMEIM 2020), 2020, : 175 - 178
  • [37] Optimization of material removal strategy in milling of thin-walled parts
    李继博
    张定华
    吴宝海
    Journal of Harbin Institute of Technology(New series), 2011, (05) : 108 - 112
  • [38] Optimization of material removal strategy in milling of thin-walled parts
    李继博
    张定华
    吴宝海
    Journal of Harbin Institute of Technology, 2011, 18 (05) : 108 - 112
  • [39] Prediction and Avoidance of Chatter in Milling of Thin-walled Structure
    Sasahara, Hiroyuki
    Naito, Yoshihisa
    PROGRESS OF MACHINING TECHNOLOGY, 2009, 407-408 : 404 - +
  • [40] Mechanism of process damping in milling of thin-walled workpiece
    Feng, Jia
    Wan, Min
    Gao, Ting-Qi
    Zhang, Wei-Hong
    INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2018, 134 : 1 - 19