Nonlinear Antiplane Deformation of an Elastic Body

被引:0
|
作者
V. D. Bondar'
机构
[1] Novosibirsk State University,
关键词
Vortex; Rubber; Elastic Deformation; Complex Variable; Incompressibility;
D O I
10.1023/A:1018848524294
中图分类号
学科分类号
摘要
The antiplane elastic deformation of a homogeneous isotropic prestretched cylindrical body is studied in a nonlinear formulation in actual–state variables under incompressibility conditions, the absence of volume forces, and under constant lateral loading along the generatrix. The boundary–value problem of axial displacement is obtained in Cartesian and complex variables and sufficient ellipticity conditions for this problem are indicated in terms of the elastic potential. The similarity to a plane vortex–free gas flow is established. The problem is solved for Mooney and Rivlin—Sonders materials simulating strong elastic deformations of rubber–like materials. Axisymmetric solutions are considered.
引用
收藏
页码:337 / 344
页数:7
相关论文
共 50 条
  • [21] ANTIPLANE DEFORMATION OF AN ELASTIC WEDGE UNDER ACTION CONCENTRATED NEAR THE CORNER POINT
    MOROZOV, NF
    NARBUT, MA
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1995, 59 (02): : 307 - 309
  • [22] Periodic System of Closely Located Holes in an Elastic Plane Under the Conditions of Antiplane Deformation
    M. P. Savruk
    O. I. Kvasnyuk
    A. B. Chornenkyi
    Materials Science, 2018, 53 : 590 - 599
  • [23] Antiplane problem for an elastic perfectly plastic body with biperiodic system of rhombic notches
    Kryven', VA
    MATERIALS SCIENCE, 2001, 37 (06) : 866 - 872
  • [24] Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem
    Rudoy E.M.
    Itou H.
    Lazarev N.P.
    Rudoy, E.M. (rem@hydro.nsc.ru); Itou, H. (h-itou@rs.tus.ac.jp); Lazarev, N.P. (nyurgun@ngs.ru), 1600, Pleiades journals (15): : 129 - 140
  • [25] Development of plastic zones in a body with rectangular slot under the conditions of antiplane deformation
    Kryven', V. A.
    Yavors'ka, M. I.
    Valyashek, V. B.
    MATERIALS SCIENCE, 2008, 44 (04) : 471 - 481
  • [26] Strength of a Body with Stochastic Distribution of Thin Defects under the Conditions of Antiplane Deformation
    Sulym, H. T.
    Popina, S. Y.
    Materials Science, 33 (01):
  • [27] Nonlinear equations of elastic deformation of plates
    A. E. Alekseev
    Journal of Applied Mechanics and Technical Physics, 2001, 42 (3) : 497 - 504
  • [28] On the kinking nonlinear elastic deformation of cobalt
    Zhou, A. G.
    Brown, D.
    Vogel, S.
    Yeheskel, O.
    Barsoum, M. W.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (18-19): : 4664 - 4673
  • [29] Nonlinear Elastic Deformation of MAX phases
    Zhou, Aiguo
    Barsoum, M. W.
    HIGH-PERFORMANCE CERAMICS VI, 2010, 434-435 : 149 - +
  • [30] DEFORMATION OF CIRCULAR NONLINEAR ELASTIC RINGS
    LABISCH, FK
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1991, 71 (04): : T243 - T246