Isotopic composition and source of plutonium in the Qinghai-Tibet Plateau frozen soils

被引:0
|
作者
Junwen Wu
机构
[1] Shantou University,Institute of Marine Biology, College of Science
[2] Xiamen University,State Key Laboratory of Marine Environmental Science
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The 239+240Pu activities and 240Pu/239Pu atom ratios in the frozen soils of the Yellow River Source Area (YRSA) were determined to examine the Pu source and evaluate its environmental risk. The 239+240Pu activities of surface frozen soils in the YRSA, ranging from 0.053 to 0.836 mBq g−1, are comparable to those observed in China elsewhere (0.005–1.990 mBq g−1). The 240Pu/239Pu atom ratios of surface soils in the YRSA are in the range of 0.168–0.201 (average = 0.187 ± 0.012, n = 6), comparable to the global fallout of 0.180 ± 0.014. Based on the latitudinal and spatial distribution of Pu isotopic composition, I clarified that the Pu source is mainly from global fallout at present. The activity levels of Pu in the YRSA do far not cause a Pu toxicity to the downstream drinking water even the frozen soil begins to melt and release Pu to the Yellow River. However, since close-in fallout from Lop Nor where the Chinese nuclear tests were carried out during 1964–1980, high deposition and accumulation of Pu was observed in the Chinese soil cores through synthesizing an expanded Pu dataset, which alerts us it is necessary to further monitor the Pu activity levels in the YRSA soil cores to ensure the safety of downstream drinking water. Finally, I point out that information on Pu isotopes would help in establishing a baseline for future environmental risk assessment.
引用
下载
收藏
相关论文
共 50 条
  • [41] Climate suitability assessment on the Qinghai-Tibet Plateau
    Liu, Jinhao
    Xin, Zhongbao
    Huang, Yanzhang
    Yu, Jia
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 816
  • [42] Pressuremeter test in permafrost on the Qinghai-Tibet plateau
    Yu, WB
    Zhu, YLL
    Lai, YM
    Zhang, JM
    Zhang, XF
    Li, HP
    Zhang, SJ
    PERMAFROST, VOLS 1 AND 2, 2003, : 1277 - 1281
  • [43] The Spatial Analysis of Monastery on the Qinghai-Tibet Plateau
    Caiji, Zhuoma
    Guo, Luo
    Xue, Dayuan
    Du, Yuhuan
    PROCEEDINGS OF THE 2015 INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE, 2015, 7 : 37 - 41
  • [44] RIVER DISCHARGE CHANGES IN THE QINGHAI-TIBET PLATEAU
    CAO Jianting1
    2. General Institute for Water Resources and Hydropower Planning and Design
    3. China Meteorological Administration
    4. Cold and Arid Regions Environmental and Engineering Research Institute
    Science Bulletin, 2006, (05) : 594 - 600
  • [45] Vegetation Growth Status and Topographic Effects in Frozen Soil Regions on the Qinghai-Tibet Plateau
    Wang, Ruijie
    Wang, Yanjiao
    Yan, Feng
    REMOTE SENSING, 2022, 14 (19)
  • [46] Pollution Characteristics of Organophosphate Esters in Frozen Soil on the Eastern Edge of Qinghai-Tibet Plateau
    Liu L.-Y.
    Yin H.-L.
    Jian L.-J.
    Xu Z.-W.
    Xiong Y.-M.
    Luo Y.
    Liu X.-W.
    Xu W.-X.
    Huanjing Kexue/Environmental Science, 2021, 42 (07): : 3549 - 3554
  • [47] Tessellons, topography, and glaciations on the Qinghai-Tibet Plateau
    Stuart A.Harris
    Hui Jun Jin
    Rui Xia He
    Si Zhong Yang
    Sciences in Cold and Arid Regions, 2018, 10 (03) : 187 - 206
  • [48] Quaternary Faulting in North Qinghai-Tibet Plateau
    Zhao Guoguang(Institute of Crustal Dynamics
    Continental Dynamics, 1996, (01) : 30 - 37
  • [49] Measuring Qinghai-Tibet plateau?s sustainability
    Fan, Yupeng
    Fang, Chuanglin
    SUSTAINABLE CITIES AND SOCIETY, 2022, 85
  • [50] Weakening of carbon sink on the Qinghai-Tibet Plateau
    Wu, Tonghua
    Ma, Wensi
    Wu, Xiaodong
    Li, Ren
    Qiao, Yongping
    Li, Xiangfei
    Yue, Guangyang
    Zhu, Xiaofan
    Ni, Jie
    GEODERMA, 2022, 412