Explicit solution of one boundary value problem in the full coupled theory of elasticity for solids with double porosity

被引:0
|
作者
I. Tsagareli
L. Bitsadze
机构
[1] I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University,
来源
Acta Mechanica | 2015年 / 226卷
关键词
Explicit Solution; Circular Hole; Double Porosity; Imaginary Argument; Nonhomogeneous Equation;
D O I
暂无
中图分类号
学科分类号
摘要
Our goal was to consider the two-dimensional version of the full coupled linear equilibrium theory of elasticity for materials with double porosity and to construct explicitly the solutions of BVPs, in the form of absolutely and uniformly convergent series that is useful in engineering practice. In this paper, the Neumann-type BVPs of statics for an elastic circle and for a plane with circular hole are considered. The uniqueness theorems of the considered boundary value problems are proved.
引用
收藏
页码:1409 / 1418
页数:9
相关论文
共 50 条
  • [31] Inverse Boundary Value Problem of the Plane Theory of Elasticity
    E. A. Shirokova
    Russian Mathematics, 2020, 64 : 66 - 73
  • [32] Cosserat spectrum of the elasticity theory boundary value problem
    Valeev, V.E.
    Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, 2000, (03): : 14 - 21
  • [33] A FINITE LAPLACE TRANSFORM METHOD FOR THE SOLUTION OF A MIXED BOUNDARY-VALUE PROBLEM IN THE THEORY OF ELASTICITY
    MILETIC, J
    JOURNAL DE MECANIQUE APPLIQUEE, 1980, 4 (04): : 407 - 419
  • [34] SOLUTION OF THE 1ST BOUNDARY-VALUE PROBLEM WITHIN THE ELASTICITY THEORY FOR A QUADRANT
    DOBRUSHKIN, VA
    DOKLADY AKADEMII NAUK BELARUSI, 1984, 28 (02): : 115 - 119
  • [35] On uniqueness of solution of the second boundary-value problem for the system of elasticity theory in unbounded domains
    Matevosyan, O.A.
    Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, 1994, (06): : 71 - 74
  • [36] Inversion Symmetry of the Solution to the First Boundary-Value Problem of the Elasticity Theory for a Half Space
    Оstrik V.І.
    Journal of Mathematical Sciences, 2021, 258 (4) : 507 - 526
  • [37] EXPLICIT SOLUTION OF A NONLOCAL BOUNDARY VALUE PROBLEM FOR HEAT EQUATION
    Tsankov, Yulian T.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2013, 66 (07): : 941 - 950
  • [38] A boundary value problem in the theory of elasticity for a rectangle: exact solutions
    Mikhail D. Kovalenko
    Irina V. Menshova
    Alexander P. Kerzhaev
    Guangming Yu
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [39] Regularized boundary element solution for an inverse boundary value problem in linear elasticity
    Marin, L
    Lesnic, D
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (11): : 817 - 825
  • [40] A boundary value problem in the theory of elasticity for a rectangle: exact solutions
    Kovalenko, Mikhail D.
    Menshova, Irina, V
    Kerzhaev, Alexander P.
    Yu, Guangming
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06):