Fundamental Equations of Quantum Mechanics in Time-Varying Domain

被引:0
|
作者
Lakhdar Gaffour
机构
[1] University of Sidi-Bel-Abbes,LSIIT
[2] ENSP,undefined
关键词
Wave equation; Wave function; Quantum mechanics; Time-varying boundary value problems; Time-varying domains;
D O I
暂无
中图分类号
学科分类号
摘要
Fundamental equations of quantum mechanics in time-varying domain are presented. The used method consists in transforming the variable domain into a fixed domain. The transformation has to be covariant in relation to the wavefunction. The new fundamental equations turn out to be a generalization of the classical equations established in a Newtonian space-time. When the time-varying domain becomes stationary, we find again the fundamental equations of the classical quantum mechanics.
引用
收藏
页码:859 / 864
页数:5
相关论文
共 50 条
  • [31] LIAPUNOV EQUATIONS FOR TIME-VARYING LINEAR-SYSTEMS
    DAPRATO, G
    ICHIKAWA, A
    [J]. SYSTEMS & CONTROL LETTERS, 1987, 9 (02) : 165 - 172
  • [32] Exponential convergence of nonlinear time-varying differential equations
    Errebii, M.
    Ellouze, I.
    Hammami, M. A.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2015, 50 (04): : 167 - 175
  • [33] On exponential stability of nonlinear time-varying differential equations
    Aeyels, D
    Peuteman, J
    [J]. AUTOMATICA, 1999, 35 (06) : 1091 - 1100
  • [34] Estimating time-varying parameters in uncertain differential equations
    Zhang, Guidong
    Sheng, Yuhong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2022, 425
  • [35] Wavelets approach to time-varying functional differential equations
    Hsiao, C. H.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (03) : 528 - 540
  • [36] On the Stability Analysis of Equations with Bounded Time-Varying Delay
    Egorov, Alexey
    [J]. IFAC PAPERSONLINE, 2019, 52 (18): : 85 - 90
  • [37] Dynamics of stochastic Boissonade system on the time-varying domain
    Zhang, Zhen
    Huang, Jianhua
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [38] Linear time-varying systems analysis in wavelet domain
    Karci, Hasari
    Tohumoglu, Gulay
    [J]. ELECTRICAL ENGINEERING, 2007, 89 (08) : 653 - 658
  • [39] Time-varying modal parameters identification in the modal domain
    Bertha, M.
    Golinval, J. -C.
    [J]. PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 2895 - 2905
  • [40] Frequency-Domain Sensing in Time-Varying Channels
    Sun, Yang
    Zhang, J. Andrew
    Wu, Kai
    Liu, Ren Ping
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (01) : 16 - 20