Hermitian Curvature and Plurisubharmonicity of Energy on Teichmüller Space

被引:0
|
作者
Domingo Toledo
机构
[1] University of Utah,Mathematics Department
来源
关键词
32G15; 58E20;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a closed Riemann surface, N a Riemannian manifold of Hermitian non-positive curvature, f : M → N a continuous map, and E the function on the Teichmüller space of M that assigns to a complex structure on M the energy of the harmonic map homotopic to f. We show that E is a plurisubharmonic function on the Teichmüller space of M. If N has strictly negative Hermitian curvature, we characterize the directions in which the complex Hessian of E vanishes.
引用
收藏
页码:1015 / 1032
页数:17
相关论文
共 50 条
  • [1] Non-Strict Plurisubharmonicity of Energy on Teichmüller Space
    Tosic, Ognjen
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (09) : 7820 - 7845
  • [2] HERMITIAN CURVATURE AND PLURISUBHARMONICITY OF ENERGY ON TEICHMULLER SPACE
    Toledo, Domingo
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (04) : 1015 - 1032
  • [3] The Weil–Petersson curvature operator on the universal Teichmüller space
    Zheng Huang
    Yunhui Wu
    [J]. Mathematische Annalen, 2019, 373 : 1 - 36
  • [4] Energy, Hopf Differential, and Metrics on Teichmüller Space
    Zongliang Sun
    Hui Guo
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 1223 - 1231
  • [5] Teichmüller contraction in the Teichmüller space of a closed set in the sphere
    Sudeb Mitra
    [J]. Israel Journal of Mathematics, 2001, 125 : 45 - 51
  • [6] Rigidity of Teichmüller space
    Georgios Daskalopoulos
    Chikako Mese
    [J]. Inventiones mathematicae, 2021, 224 : 791 - 916
  • [7] Teichmüller rays and the Gardiner–Masur boundary of Teichmüller space
    Hideki Miyachi
    [J]. Geometriae Dedicata, 2008, 137 : 113 - 141
  • [8] On the inclusion of the quasiconformal Teichmüller space into the length-spectrum Teichmüller space
    D. Alessandrini
    L. Liu
    A. Papadopoulos
    W. Su
    [J]. Monatshefte für Mathematik, 2016, 179 : 165 - 189
  • [9] Integrable Teichmüller space
    Xueping Liu
    Yuliang Shen
    [J]. Mathematische Zeitschrift, 2022, 302 : 2233 - 2251
  • [10] A quantum Teichmüller space
    V. V. Fock
    L. O. Chekhov
    [J]. Theoretical and Mathematical Physics, 1999, 120 : 1245 - 1259