Multi-label movie genre classification based on multimodal fusion

被引:0
|
作者
Zihui Cai
Hongwei Ding
Jinlu Wu
Ying Xi
Xuemeng Wu
Xiaohui Cui
机构
[1] Wuhan University,Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering
来源
关键词
Multi-label; Movie genre classification; Multimodal fusion; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Determining the genre of a movie based on its relevant information is a challenging multi-label classification task. Previous studies tended to classify movies based on only one or two modalities, ignoring some valuable modalities. Considering this, we propose a multimodal movie genre classification framework which comprehensively considers the data from different modalities including the audio, poster, plot and frame sequences from video. To be specific, it processes the data from various modalities with the help of deep learning technologies, and fuses them in the way of decision-level fusion and intermediate fusion including concatenation and element-wise sum, which can improve the classification performance due to making full use of the information complementarity between multiple modalities. We train and evaluate the proposed framework on the LMTD-9 dataset. The results show that our best multimodal model outperforms state-of-the-art methods by 8.6% improvement in AU(PRC) and 5.3% improvement in AU(PRC)w. It can be seen that the performance of movie genre classification can be effectively improved by means of multimodal fusion.
引用
收藏
页码:36823 / 36840
页数:17
相关论文
共 50 条
  • [31] GPF: Generative Prediction Fusion for Multi-Label Emotion Classification
    Huang, Shiqiao
    Zhang, Weiwen
    Lin, Nankai
    Xu, Mianshen
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1657 - 1662
  • [32] Class label fusion guided correlation learning for incomplete multi-label classification
    Jia, Qingwei
    Deng, Tingquan
    Yang, Ming
    Wang, Yan
    Wang, Changzhong
    INFORMATION FUSION, 2025, 120
  • [33] Boosting-based Multi-label Classification
    Kajdanowicz, Tomasz
    Kazienko, Przemyslaw
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2013, 19 (04) : 502 - 520
  • [34] Multi-label Anomaly Classification Based on Electrocardiogram
    Li, Chenyang
    Sun, Le
    HEALTH INFORMATION SCIENCE, HIS 2021, 2021, 13079 : 171 - 178
  • [35] Biclustering-based multi-label classification
    Schmitke, Luiz Rafael
    Paraiso, Emerson Cabrera
    Nievola, Julio Cesar
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (08) : 4861 - 4898
  • [36] Topic Model Based Multi-Label Classification
    Padmanabhan, Divya
    Bhat, Satyanath
    Shevade, Shirish
    Narahari, Y.
    2016 IEEE 28TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2016), 2016, : 996 - 1003
  • [37] A Multi-label Multimodal Deep Learning Framework for Imbalanced Data Classification
    Pouyanfar, Samira
    Wang, Tianyi
    Chen, Shu-Ching
    2019 2ND IEEE CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2019), 2019, : 199 - 204
  • [38] Multi-label classification with label clusters
    Gatto, Elaine Cecilia
    Ferrandin, Mauri
    Cerri, Ricardo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, 67 (02) : 1741 - 1785
  • [39] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419
  • [40] Multi-label classification based on analog reasoning
    Nicolas, Ruben
    Sancho-Asensio, Andreu
    Golobardes, Elisabet
    Fornells, Albert
    Orriols-Puig, Albert
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (15) : 5924 - 5931