Sum of divisors in a ring of gaussian integers

被引:0
|
作者
Sinyavskii O.V. [1 ]
机构
[1] Odessa University, Odessa
关键词
Asymptotic Formula; Arithmetic Progression; Narrow Sector; Gaussian Integer;
D O I
10.1023/A:1013333400370
中图分类号
学科分类号
摘要
We construct an asymptotic formula for a sum function for σa(α), where σa(α) is the sum of the ath powers of the norms of divisors of the Gaussian integer a on an arithmetic progression α = α0 (mod γ) and in a narrow sector (φ1 ≤ arg α < φ2- For this purpose, we use a representation of σa(n) in the form of a series in the Ramanujan sums. © 2001 Plenum Publishing Corporation.
引用
收藏
页码:1156 / 1170
页数:14
相关论文
共 50 条
  • [41] Integers with dense divisors .1.
    Saias, E
    JOURNAL OF NUMBER THEORY, 1997, 62 (01) : 163 - 191
  • [42] REMARKS ON THE NUMBER OF PRIME DIVISORS OF INTEGERS
    Hassani, Mehdi
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (03): : 843 - 849
  • [43] PRIME DIVISORS OF POLYNOMIALS AT CONSECUTIVE INTEGERS
    TURK, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1980, 319 : 142 - 152
  • [44] Integers without divisors in a given progression
    Narkiewicz, Wladyslaw
    Radziejewski, Maciej
    MONATSHEFTE FUR MATHEMATIK, 2011, 164 (01): : 75 - 85
  • [45] ON DIVISORS OF SUMS OF INTEGERS .3.
    POMERANCE, C
    SARKOZY, A
    STEWART, CL
    PACIFIC JOURNAL OF MATHEMATICS, 1988, 133 (02) : 363 - 379
  • [46] COMMON DIVISORS AND SQUARE FREE INTEGERS
    KENNEDY, G
    AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (01): : 54 - 55
  • [47] INTEGERS WITH CONSECUTIVE DIVISORS IN SMALL RATIO
    VOSE, MD
    JOURNAL OF NUMBER THEORY, 1984, 19 (02) : 233 - 238
  • [48] Integers without divisors in a given progression
    Władysław Narkiewicz
    Maciej Radziejewski
    Monatshefte für Mathematik, 2011, 164 : 75 - 85
  • [49] ON THE SUM OF DIVISORS FUNCTION
    BALAKRISHNAN, U
    JOURNAL OF NUMBER THEORY, 1995, 51 (02) : 147 - 168
  • [50] ON DIVISORS OF SUMS OF INTEGERS .4.
    SARKOZY, A
    STEWART, CL
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1988, 40 (04): : 788 - 816