A Full Proof of the BGW Protocol for Perfectly Secure Multiparty Computation

被引:0
|
作者
Gilad Asharov
Yehuda Lindell
机构
[1] Hebrew University of Jerusalem,School of Computer Science and Engineering
[2] Bar-Ilan University,Department of Computer Science
来源
Journal of Cryptology | 2017年 / 30卷
关键词
Multiparty computation; Perfect security; BGW ; Cryptographic protocols;
D O I
暂无
中图分类号
学科分类号
摘要
In the setting of secure multiparty computation, a set of n parties with private inputs wish to jointly compute some functionality of their inputs. One of the most fundamental results of secure computation was presented by Ben-Or, Goldwasser, and Wigderson (BGW) in 1988. They demonstrated that any n-party functionality can be computed with perfect security, in the private channels model. When the adversary is semi-honest, this holds as long as t<n/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t<n/2$$\end{document} parties are corrupted, and when the adversary is malicious, this holds as long as t<n/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t<n/3$$\end{document} parties are corrupted. Unfortunately, a full proof of these results was never published. In this paper, we remedy this situation and provide a full proof of security of the BGW protocol. This includes a full description of the protocol for the malicious setting, including the construction of a new subprotocol for the perfect multiplication protocol that seems necessary for the case of n/4≤t<n/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n/4\le t<n/3$$\end{document}.
引用
收藏
页码:58 / 151
页数:93
相关论文
共 50 条
  • [31] Secure Multiparty Computation in arbitrary rings
    Prunescu, Mihai
    2021 23RD INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2021), 2021, : 283 - 290
  • [32] Scalable and unconditionally secure multiparty computation
    Damgard, Ivan
    Nielsen, Jesper Buns
    ADVANCES IN CRYPTOLOGY - CRYPTO 2007, PROCEEDINGS, 2007, 4622 : 572 - 590
  • [33] On the necessity of rewinding in secure multiparty computation
    Backes, Michael
    Mueller-Quade, Jorn
    Unruh, Dominique
    THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2007, 4392 : 157 - +
  • [34] Secure Multiparty Computation with Free Branching
    Goel, Aarushi
    Hall-Andersen, Mathias
    Hegde, Aditya
    Jain, Abhishek
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2022, PT I, 2022, 13275 : 397 - 426
  • [35] Secure Multiparty Computation from SGX
    Bahmani, Raad
    Barbosa, Manuel
    Brasser, Ferdinand
    Portela, Bernardo
    Sadeghi, Ahmad-Reza
    Scerri, Guillaume
    Warinschi, Bogdan
    FINANCIAL CRYPTOGRAPHY AND DATA SECURITY, FC 2017, 2017, 10322 : 477 - 497
  • [36] Secure multiparty computation of statistical distribution
    Wang, Ke
    Dai, Yiqi
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2010, 47 (02): : 201 - 206
  • [37] General secure multiparty computation - Preface
    Goldreich, O
    JOURNAL OF CRYPTOLOGY, 2000, 13 (01) : 1 - 7
  • [38] Secure multiparty computation of a comparison problem
    Liu, Xin
    Li, Shundong
    Liu, Jian
    Chen, Xiubo
    Xu, Gang
    SPRINGERPLUS, 2016, 5
  • [39] Secure Multiparty Computation Goes Live
    Bogetoft, Peter
    Christensen, Dan Lund
    Damgard, Ivan
    Geisler, Martin
    Jakobsen, Thomas
    Kroigaard, Mikkel
    Nielsen, Janus Dam
    Nielsen, Jesper Buns
    Nielsen, Jurt
    Pagter, Jakob
    Schwartzbach, Michael
    Toft, Tomas
    FINANCIAL CRYPTOGRAPHY AND DATA SECURITY, 2009, 5628 : 325 - +
  • [40] Secure Multiparty Computation with Sublinear Preprocessing
    Boyle, Elette
    Gilboa, Niv
    Ishai, Yuval
    Nof, Ariel
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2022, PT I, 2022, 13275 : 427 - 457