In the setting of secure multiparty computation, a set of n parties with private inputs wish to jointly compute some functionality of their inputs. One of the most fundamental results of secure computation was presented by Ben-Or, Goldwasser, and Wigderson (BGW) in 1988. They demonstrated that any n-party functionality can be computed with perfect security, in the private channels model. When the adversary is semi-honest, this holds as long as t<n/2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t<n/2$$\end{document} parties are corrupted, and when the adversary is malicious, this holds as long as t<n/3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t<n/3$$\end{document} parties are corrupted. Unfortunately, a full proof of these results was never published. In this paper, we remedy this situation and provide a full proof of security of the BGW protocol. This includes a full description of the protocol for the malicious setting, including the construction of a new subprotocol for the perfect multiplication protocol that seems necessary for the case of n/4≤t<n/3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n/4\le t<n/3$$\end{document}.