Recent frontiers of climate changes in East Asia at global warming of 1.5°C and 2°C

被引:0
|
作者
Qinglong You
Zhihong Jiang
Xu Yue
Weidong Guo
Yonggang Liu
Jian Cao
Wei Li
Fangying Wu
Ziyi Cai
Huanhuan Zhu
Tim Li
Zhengyu Liu
Jinhai He
Deliang Chen
Nick Pepin
Panmao Zhai
机构
[1] Fudan University,Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences
[2] Nanjing University of Information Science & Technology (NUIST),Key Laboratory of Meteorological Disaster of Ministry of Education, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster
[3] School of Environmental Science and Engineering,Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology
[4] NUIST,Institute for Climate and Global Change Research, School of Atmospheric Sciences
[5] Nanjing University,Department of Atmospheric and Oceanic Sciences, School of Physics
[6] Peking University,International Pacific Research Center, Department of Atmospheric Sciences
[7] University of Hawaii at Manoa,Atmospheric Science Program, Department of Geography
[8] The Ohio State University,Department of Earth Sciences
[9] University of Gothenburg,School of Environment, Geography and Geosciences
[10] University of Portsmouth,undefined
[11] Chinese Academy of Meteorological Sciences,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
East Asia is undergoing significant climate changes and these changes are likely to grow in the future. It is urgent to characterize both the mechanisms controlling climate and the response of the East Asian climate system at global warming of 1.5 and 2 °C above pre-industrial levels (GW1.5 and GW2 hereafter). This study reviews recent studies on East Asian climate change at GW1.5 and GW2. The intensity and variability of the East Asian summer monsoon are expected to increase modestly, accompanied by an enhancement of water vapor transport. Other expected changes include the intensification of the Western Pacific Subtropical High and an intensified and southward shift of the East Asian jet, while the intensity of the East Asian winter monsoon is projected to reduce with high uncertainty. Meanwhile, the frequency of ENSO may increase in a warming world with great uncertainty. Significant warming and wetting occur in East Asia, with more pronounced intensity, frequency, and duration of climate extremes at GW2 than that at GW1.5. The fine structure of regional climate changes and the presence and location of various warming hotspots, however, show substantial divergence among different model simulations. Furthermore, the Asian climate responses can differ substantially between the transient and stabilized GW1.5 and GW2, which has important implications for emission policies. Thus, to better plan effective mitigation and adaptation activities, further research including an in-depth exploration of the divergent responses in transient versus stabilized scenarios, the quantification of future projection uncertainties, and improvements of the methods to reduce model uncertainties are required.
引用
收藏
相关论文
共 50 条
  • [21] Drylands climate response to transient and stabilized 2°C and 1.5°C global warming targets
    Wei, Yun
    Yu, Haipeng
    Huang, Jianping
    Zhou, Tianjun
    Zhang, Meng
    Ren, Yu
    CLIMATE DYNAMICS, 2019, 53 (3-4) : 2375 - 2389
  • [22] Drylands climate response to transient and stabilized 2 °C and 1.5 °C global warming targets
    Yun Wei
    Haipeng Yu
    Jianping Huang
    Tianjun Zhou
    Meng Zhang
    Yu Ren
    Climate Dynamics, 2019, 53 : 2375 - 2389
  • [23] Transient and Quasi-Equilibrium Climate States at 1.5°C and 2°C Global Warming
    King, Andrew D.
    Borowiak, Alexander R.
    Brown, Josephine R.
    Frame, David J.
    Harrington, Luke J.
    Min, Seung-Ki
    Pendergrass, Angeline
    Rugenstein, Maria
    Sniderman, J. M. Kale
    Stone, Daithi A.
    EARTHS FUTURE, 2021, 9 (11)
  • [24] Tibetan Plateau amplification of climate extremes under global warming of 1.5 °C, 2 °C and 3 °C
    You, Qinglong
    Wu, Fangying
    Shen, Liucheng
    Pepin, Nick
    Jiang, Zhihong
    Kang, Shichang
    GLOBAL AND PLANETARY CHANGE, 2020, 192 (192)
  • [25] On the Linearity of Local and Regional Temperature Changes from 1.5°C to 2°C of Global Warming
    King, Andrew D.
    Knutti, Reto
    Uhe, Peter
    Mitchell, Daniel M.
    Lewis, Sophie C.
    Arblaster, Julie M.
    Freychet, Nicolas
    JOURNAL OF CLIMATE, 2018, 31 (18) : 7495 - 7514
  • [26] Risks for the global freshwater system at 1.5 °C and 2 °C global warming
    Doell, Petra
    Trautmann, Tim
    Gerten, Dieter
    Schmied, HannesMueller
    Ostberg, Sebastian
    Saaed, Fahad
    Schleussner, Carl-Friedrich
    ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (04):
  • [27] Projected climate over the Greater Horn of Africa under 1.5 °C and 2 °C global warming
    Osima, Sarah
    Indasi, Victor S.
    Zaroug, Modathir
    Endris, Hussen Seid
    Gudoshava, Masilin
    Misiani, Herbert O.
    Nimusiima, Alex
    Anyah, Richard O.
    Otieno, George
    Ogwang, Bob A.
    Jain, Suman
    Kondowe, Alfred L.
    Mwangi, Emmah
    Lennard, Chris
    Nikulin, Grigory
    Dosio, Alessandro
    ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (06):
  • [28] The southern African climate under 1.5 °C and 2 °C of global warming as simulated by CORDEX regional climate models
    Maure, G.
    Pinto, I.
    Ndebele-Murisa, M.
    Muthige, M.
    Lennard, C.
    Nikulin, G.
    Dosio, A.
    Meque, A.
    ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (06):
  • [29] Changes in monsoon precipitation in East Asia under a 2°C interglacial warming
    Gao, Xinbo
    Hao, Qingzhen
    Wang, Luo
    Song, Yang
    Ge, Junyi
    Wu, Haibin
    Xu, Bing
    Han, Long
    Fu, Yu
    Wu, Xuechao
    Deng, Chenglong
    Guo, Zhengtang
    SCIENCE ADVANCES, 2024, 10 (20):
  • [30] Changes in extreme ocean wave heights under 1.5 °C, 2 °C, and 3 °C global warming
    Patra, Anindita
    Min, Seung-Ki
    Kumar, Prashant
    Wang, Xiaolan L.
    WEATHER AND CLIMATE EXTREMES, 2021, 33