Fiercely ramified cyclic extensions of p-adic fields with imperfect residue field

被引:0
|
作者
Stefan Wewers
机构
[1] Universität Ulm,Institut für Reine Mathematik
来源
Manuscripta Mathematica | 2014年 / 143卷
关键词
11S15; 11S31; 14F05; 19F05;
D O I
暂无
中图分类号
学科分类号
摘要
We study the ramification of fierce cyclic Galois extensions of a local field K of characteristic zero with a one-dimensional residue field of characteristic p > 0. Using Kato’s theory of the refined Swan conductor, we associate to such an extension a ramification datum, consisting of a sequence of pairs (δi, ωi), where δi is a positive rational number and ωi a differential form on the residue field of K. Our main result gives necessary and sufficient conditions on such sequences to occur as a ramification datum of a fierce cyclic extension of K.
引用
收藏
页码:445 / 472
页数:27
相关论文
共 50 条