Characterizations of Strength Extremal Graphs

被引:0
|
作者
Xiaofeng Gu
Hong-Jian Lai
Ping Li
Senmei Yao
机构
[1] University of Wisconsin-Superior,Department of Mathematics and Computer Science
[2] West Virginia University,Department of Mathematics
[3] Xinjiang University,College of Mathematics and System Sciences
[4] Beijing Jiaotong University,Department of Mathematics
[5] Marian University,Department of Mathematics, School of Arts and Sciences
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Edge connectivity; Edge-disjoint spanning trees; -Maximal graphs; Network strength; Network reliability;
D O I
暂无
中图分类号
学科分类号
摘要
With graphs considered as natural models for many network design problems, edge connectivity κ′(G) and maximum number of edge-disjoint spanning trees τ(G) of a graph G have been used as measures for reliability and strength in communication networks modeled as graph G (see Cunningham, in J ACM 32:549–561, 1985; Matula, in Proceedings of 28th Symposium Foundations of Computer Science, pp 249–251, 1987, among others). Mader (Math Ann 191:21–28, 1971) and Matula (J Appl Math 22:459–480, 1972) introduced the maximum subgraph edge connectivity κ′¯(G)=max{κ′(H):HisasubgraphofG}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\kappa'}(G) = {\rm max} \{\kappa'(H) : H {\rm is} \, {\rm a} \, {\rm subgraph} \, {\rm of} G \}}$$\end{document} . Motivated by their applications in network design and by the established inequalities κ′¯(G)≥κ′(G)≥τ(G),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\kappa'}(G) \ge \kappa'(G) \ge \tau(G),$$\end{document}we present the following in this paper: For each integer k > 0, a characterization for graphs G with the property that κ′¯(G)≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\kappa'}(G) \le k}$$\end{document} but for any edge e not in G, κ′¯(G+e)≥k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\kappa'}(G + e) \ge k+1}$$\end{document}.For any integer n > 0, a characterization for graphs G with |V(G)| = n such that κ′(G) = τ(G) with |E(G)| minimized.
引用
收藏
页码:1453 / 1461
页数:8
相关论文
共 50 条
  • [41] Extremal Graphs on the Rupture Degree
    Qin, Xiaoxiao
    Xie, Ting
    Li, Wen
    Li, Yinkui
    JOURNAL OF INTERCONNECTION NETWORKS, 2021, 21 (04)
  • [42] On Extremal Bipartite Tricyclic Graphs
    He, Fangguo
    Zhu, Zhongxun
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2017, 77 (03) : 655 - 672
  • [43] EXTREMAL SUBGRAPHS OF RANDOM GRAPHS
    BABAI, L
    SIMONOVITS, M
    SPENCER, J
    JOURNAL OF GRAPH THEORY, 1990, 14 (05) : 599 - 622
  • [44] On Extremal Subgraphs of Random Graphs
    Brightwell, Graham
    Panagiotou, Konstantinos
    Steger, Angelika
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 477 - +
  • [45] Spectral extremal graphs for the bowtie
    Li, Yongtao
    Lu, Lu
    Peng, Yuejian
    DISCRETE MATHEMATICS, 2023, 346 (12)
  • [46] Extremal graphs for the Tutte polynomial
    Kahl, Nathan
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 152 : 121 - 152
  • [47] The extremal graphs with respect to their nullity
    Sa Rula
    An Chang
    Yirong Zheng
    Journal of Inequalities and Applications, 2016
  • [48] Extremal graphs for odd wheels
    Yuan, Long-Tu
    JOURNAL OF GRAPH THEORY, 2021, 98 (04) : 691 - 707
  • [49] Extremal graphs in connectivity augmentation
    Jordán, T
    JOURNAL OF GRAPH THEORY, 1999, 31 (03) : 179 - 193
  • [50] Extremal Graphs for Randic Energy
    Das, Kinkar Ch.
    Sun, Shaowei
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2017, 77 (01) : 77 - 84