Characterizations of Strength Extremal Graphs

被引:0
|
作者
Xiaofeng Gu
Hong-Jian Lai
Ping Li
Senmei Yao
机构
[1] University of Wisconsin-Superior,Department of Mathematics and Computer Science
[2] West Virginia University,Department of Mathematics
[3] Xinjiang University,College of Mathematics and System Sciences
[4] Beijing Jiaotong University,Department of Mathematics
[5] Marian University,Department of Mathematics, School of Arts and Sciences
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Edge connectivity; Edge-disjoint spanning trees; -Maximal graphs; Network strength; Network reliability;
D O I
暂无
中图分类号
学科分类号
摘要
With graphs considered as natural models for many network design problems, edge connectivity κ′(G) and maximum number of edge-disjoint spanning trees τ(G) of a graph G have been used as measures for reliability and strength in communication networks modeled as graph G (see Cunningham, in J ACM 32:549–561, 1985; Matula, in Proceedings of 28th Symposium Foundations of Computer Science, pp 249–251, 1987, among others). Mader (Math Ann 191:21–28, 1971) and Matula (J Appl Math 22:459–480, 1972) introduced the maximum subgraph edge connectivity κ′¯(G)=max{κ′(H):HisasubgraphofG}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\kappa'}(G) = {\rm max} \{\kappa'(H) : H {\rm is} \, {\rm a} \, {\rm subgraph} \, {\rm of} G \}}$$\end{document} . Motivated by their applications in network design and by the established inequalities κ′¯(G)≥κ′(G)≥τ(G),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\kappa'}(G) \ge \kappa'(G) \ge \tau(G),$$\end{document}we present the following in this paper: For each integer k > 0, a characterization for graphs G with the property that κ′¯(G)≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\kappa'}(G) \le k}$$\end{document} but for any edge e not in G, κ′¯(G+e)≥k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\kappa'}(G + e) \ge k+1}$$\end{document}.For any integer n > 0, a characterization for graphs G with |V(G)| = n such that κ′(G) = τ(G) with |E(G)| minimized.
引用
收藏
页码:1453 / 1461
页数:8
相关论文
共 50 条
  • [1] Characterizations of Strength Extremal Graphs
    Gu, Xiaofeng
    Lai, Hong-Jian
    Li, Ping
    Yao, Senmei
    GRAPHS AND COMBINATORICS, 2014, 30 (06) : 1453 - 1461
  • [2] Per-spectral characterizations of graphs with extremal per-nullity
    Wu, Tingzeng
    Zhang, Heping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 484 : 13 - 26
  • [3] Extremal characterizations of Asplund spaces
    Mordukhovich, BS
    Shao, YG
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (01) : 197 - 205
  • [4] Extremal characterizations of reflexive spaces
    Wang, Xianfu
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 82 : 429 - 439
  • [5] Spectral extremal graphs for fan graphs
    Yu, Loujun
    Li, Yongtao
    Peng, Yuejian
    DISCRETE MATHEMATICS, 2025, 348 (05)
  • [6] ON EXTREMAL PROBLEMS OF GRAPHS AND GENERALIZED GRAPHS
    ERDOS, P
    ISRAEL JOURNAL OF MATHEMATICS, 1964, 2 (03) : 183 - &
  • [7] Extremal embedded graphs
    Yan, Qi
    Jin, Xian'an
    ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) : 637 - 652
  • [8] ON SOME EXTREMAL GRAPHS
    MURTY, USR
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1968, 19 (1-2): : 69 - &
  • [9] Extremal graphs for weights
    Discrete Math, 1-3 (5-19):
  • [10] Extremal Graphs for Homomorphisms
    Cutler, Jonathan
    Radcliffe, A. J.
    JOURNAL OF GRAPH THEORY, 2011, 67 (04) : 261 - 284