With graphs considered as natural models for many network design problems, edge connectivity κ′(G) and maximum number of edge-disjoint spanning trees τ(G) of a graph G have been used as measures for reliability and strength in communication networks modeled as graph G (see Cunningham, in J ACM 32:549–561, 1985; Matula, in Proceedings of 28th Symposium Foundations of Computer Science, pp 249–251, 1987, among others). Mader (Math Ann 191:21–28, 1971) and Matula (J Appl Math 22:459–480, 1972) introduced the maximum subgraph edge connectivity κ′¯(G)=max{κ′(H):HisasubgraphofG}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\overline{\kappa'}(G) = {\rm max} \{\kappa'(H) : H {\rm is} \, {\rm a} \, {\rm subgraph} \, {\rm of} G \}}$$\end{document} . Motivated by their applications in network design and by the established inequalities
κ′¯(G)≥κ′(G)≥τ(G),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\overline{\kappa'}(G) \ge \kappa'(G) \ge \tau(G),$$\end{document}we present the following in this paper:
For each integer k > 0, a characterization for graphs G with the property that κ′¯(G)≤k\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\overline{\kappa'}(G) \le k}$$\end{document} but for any edge e not in G, κ′¯(G+e)≥k+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\overline{\kappa'}(G + e) \ge k+1}$$\end{document}.For any integer n > 0, a characterization for graphs G with |V(G)| = n such that κ′(G) = τ(G) with |E(G)| minimized.