Singular and Calabi–Yau varieties linked with billiard trajectories and diffusion operators

被引:0
|
作者
Juan García Escudero
机构
[1] Universidad de Oviedo,Facultad de Ciencias
关键词
Algebraic hypersurfaces; Singularities; Calabi–Yau threefolds; Primary 14J70; Secondary 14J17; 14J32; 35K05;
D O I
暂无
中图分类号
学科分类号
摘要
The images under a certain map of periodic billiard trajectories inside the fundamental region of the affine Weyl group of the root system A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{2}$$\end{document} are closed curves and configurations of lines described by a one-parameter family of polynomials. The polynomials are related with eigenvectors of symmetric diffusion operators connected with the deltoid. Several associated singular varieties and Calabi–Yau threefolds defined over the rationals are constructed.
引用
收藏
页码:1613 / 1629
页数:16
相关论文
共 50 条