On Numerical Dimensions of Calabi-Yau Varieties

被引:0
|
作者
Jiang, Chen [1 ]
Wang, Long [2 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Jiangwan Campus, Shanghai 200438, Peoples R China
[2] Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba, Meguro ku, Tokyo 1538914, Japan
关键词
BIRATIONAL AUTOMORPHISM; MINIMAL MODELS; MANIFOLDS; CONE;
D O I
10.1093/imrn/rnad032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Calabi-Yau variety of Picard number two with infinite birational automorphism group. We show that the numerical dimension kappa(sigma)(R) of the extremal rays of the closed movable cone of X is dim X/2. More generally, we investigate the relation between the two numerical dimensions kappa(sigma)(R) and kappa(R)(vol) for Calabi-Yau varieties. We also compute kappa(sigma)(R) for non-big divisors in the closed movable cone of a projective hyperahler manifold.
引用
收藏
页码:1472 / 1495
页数:24
相关论文
共 50 条
  • [1] Double spinor Calabi-Yau varieties
    Manivel, Laurent
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2019, 3
  • [2] Numerical Calabi-Yau metrics
    Douglas, Michael R.
    Karp, Robert L.
    Lukic, Sergio
    Reinbacher, Rene
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
  • [3] Hyperplane sections of Calabi-Yau varieties
    Wahl, J
    Hill, C
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2002, 544 : 39 - 59
  • [4] Calabi-Yau and fractional Calabi-Yau categories
    Kuznetsov, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 753 : 239 - 267
  • [5] On syzygies of Calabi-Yau varieties and varieties of general type
    Niu, Wenbo
    ADVANCES IN MATHEMATICS, 2019, 343 : 756 - 788
  • [6] Eulerian digraphs and toric Calabi-Yau varieties
    de Medeiros, Paul
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (07):
  • [7] On Calabi-Yau complete intersections in toric varieties
    Batyrev, VV
    Borisov, LA
    HIGHER DIMENSIONAL COMPLEX VARIETIES, 1996, : 39 - 65
  • [8] Embedding of Calabi-Yau deformations into toric varieties
    Anvar R. Mavlyutov
    Mathematische Annalen, 2005, 333 : 45 - 65
  • [9] A family of Calabi-Yau varieties and potential automorphy
    Harris, Michael
    Shepherd-Barron, Nick
    Taylor, Richard
    ANNALS OF MATHEMATICS, 2010, 171 (02) : 779 - 813
  • [10] Rigidity for families of polarized Calabi-Yau varieties
    Yi, Z
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2004, 68 (02) : 185 - 222