A melanoma-associated germline mutation in exon 1β inactivates p14ARF

被引:0
|
作者
Helen Rizos
Susana Puig
Cèlia Badenas
Josep Malvehy
Artur P Darmanian
Loli Jiménez
Montserrat Milà
Richard F Kefford
机构
[1] Westmead Institute for Cancer Research,
[2] University of Sydney at Westmead Millennium Institute,undefined
[3] Westmead Hospital,undefined
[4] Hospital Clinic,undefined
[5] IDIBAPS,undefined
[6] Universitat de Barcelona,undefined
来源
Oncogene | 2001年 / 20卷
关键词
p14ARF; p16; melanoma; germline mutation;
D O I
暂无
中图分类号
学科分类号
摘要
The INK4a/ARF locus encodes the cyclin dependent kinase inhibitor, p16INK4a and the p53 activator, p14ARF. These two proteins have an independent first exon (exon 1α and exon 1β, respectively) but share exons 2 and 3 and are translated in different reading frames. Germline mutations in this locus are associated with melanoma susceptibility in 20–40% of multiple case melanoma families. Although most of these mutations specifically inactivate p16INK4a, more than 40% of the INK4a/ARF alterations located in exon 2, affect both p16INK4a and p14ARF. We now report a 16 base pair exon 1β germline insertion specifically altering p14ARF, but not p16INK4a, in an individual with multiple primary melanomas. This mutant p14ARF, 60ins16, was restricted to the cytoplasm, did not stabilize p53 and was unable to arrest the growth of a p53 expressing melanoma cell line. This is the first example of an exon 1β mutation that inactivates p14ARF, and thus implicates a role for this tumour suppressor in melanoma predisposition.
引用
收藏
页码:5543 / 5547
页数:4
相关论文
共 50 条
  • [21] Contribution of germline mutations in BRCA2, P16INK4A, P14ARF and P15 to uveal melanoma
    Hearle, N
    Damato, BE
    Humphreys, J
    Wixey, J
    Green, H
    Stone, J
    Easton, DF
    Houlston, RS
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2003, 44 (02) : 458 - 462
  • [22] Fusion of the melanoma gene, p14arf on 9p, to a translocation hotspot in a gap in 22q in a patient with melanoma, deafness and DNA repair deficiency, is a negative regulator of p14arf and TBX1
    Tan, X.
    Anzick, S. L.
    Khan, S. G.
    Ueda, T.
    Stone, G.
    DiGiovanna, J. J.
    Tamura, D.
    Wattendorf, D.
    Brewer, C.
    Zalewski, C.
    Walker, R.
    Griffith, A.
    Butman, J.
    Meltzer, P.
    Bergstresser, P.
    Kraemer, K. H.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2011, 131 : S21 - S21
  • [24] Impaired p14ARF and MDM2 Nuclecytoplasmic Shuttling in Uveal Melanoma
    Morales-Tirado, Vanessa Marie
    Awh, Caroline
    Goldsmith, Zachary K.
    Jablonski, Monica M.
    King, Benjamin
    Wilson, Matthew W.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [25] P14ARF相关信号通路
    裴海龙
    周光明
    中国生物工程杂志, 2010, 30 (11) : 75 - 78
  • [26] p14ARF与人类肿瘤
    左超海
    高炎明
    海南医学院学报, 2005, (01) : 78 - 80
  • [27] P14ARF: The Absence that Makes the Difference
    Cilluffo, Danilo
    Barra, Viviana
    Di Leonardo, Aldo
    GENES, 2020, 11 (07) : 1 - 8
  • [28] Gene expression profiling in melanoma identifies novel downstream effectors of p14ARF
    Packer, Leisl M.
    Pavey, Sandra J.
    Boyle, Glen M.
    Stark, Mitchell S.
    Ayub, Ana L.
    Rizos, Helen
    Hayward, Nicholas K.
    INTERNATIONAL JOURNAL OF CANCER, 2007, 121 (04) : 784 - 790
  • [29] Effects of overexpressing p14ARF on the apoptosis in human melanoma cells irradiated with γ-ray
    Peng, LX
    Zhang, W
    Liu, HT
    He, DC
    Gao, P
    CHINESE SCIENCE BULLETIN, 2003, 48 (18): : 1971 - 1975
  • [30] Methylation of p14ARF gene in meningiomas and its correlation to the p53 expression and mutation
    Amatya, VJ
    Takeshima, Y
    Inai, K
    MODERN PATHOLOGY, 2004, 17 (06) : 705 - 710