Second-Order Minimization Method for Nonsmooth Functions Allowing Convex Quadratic Approximations of the Augment

被引:0
|
作者
M. E. Abbasov
机构
[1] Saint-Petersburg University,
[2] St. Petersburg State University,undefined
[3] SPbSU,undefined
[4] SPbU,undefined
关键词
Nonsmooth analysis; Nondifferentiable optimization ; Coexhausters; 49J52; 90C30; 65K05;
D O I
暂无
中图分类号
学科分类号
摘要
Second-order methods play an important role in the theory of optimization. Due to the usage of more information about considered function, they give an opportunity to find the stationary point faster than first-order methods. Well-known and sufficiently studied Newton’s method is widely used to optimize smooth functions. The aim of this work is to obtain a second-order method for unconstrained minimization of nonsmooth functions allowing convex quadratic approximation of the augment. This method is based on the notion of coexhausters—new objects in nonsmooth analysis, introduced by V. F. Demyanov. First, we describe and prove the second-order necessary condition for a minimum. Then, we build an algorithm based on that condition and prove its convergence. At the end of the paper, a numerical example illustrating implementation of the algorithm is given.
引用
下载
收藏
页码:666 / 674
页数:8
相关论文
共 50 条