Learning real-time automata

被引:0
|
作者
Jie An
Lingtai Wang
Bohua Zhan
Naijun Zhan
Miaomiao Zhang
机构
[1] Tongji University,School of Software Engineering
[2] Chinese Academy of Sciences,State Key Laboratory of Computer Science, Institute of Software
[3] University of Chinese Academy of Sciences,undefined
来源
关键词
automaton learning; active learning; real-time automata;
D O I
暂无
中图分类号
学科分类号
摘要
Real-time automata (RTAs) are a subclass of timed automata with only one clock which resets at each transition. In this paper, we present an active learning algorithm for deterministic real-time automata (DRTAs) in both continuous-time semantics and discrete-time semantics. For a target language recognized by a DRTA A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{A}$$\end{document}, we convert the problem of learning DRTA A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{A}$$\end{document} to the problem of learning a canonical real-time automaton A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{A}$$\end{document} with the same recognized language, i.e., L(A)=L(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}(\mathbb{A})=\mathcal{L}(\mathcal{A})$$\end{document}. The algorithm is inspired by existing learning algorithms for symbolic automata.
引用
收藏
相关论文
共 50 条
  • [31] Quasi-rocking real-time pushdown automata
    Kim, Changwook
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (48) : 6720 - 6735
  • [32] Implementation of Timed Automata in a Real-time Operating System
    Kucera, Pavel
    Hyncica, Ondrej
    Honzik, Petr
    WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, VOLS 1 AND 2, 2010, : 56 - 60
  • [33] Minimal Size of Counters for (Real-Time) Multicounter Automata
    Geffert, Viliam
    Bednarova, Zuzana
    FUNDAMENTA INFORMATICAE, 2021, 181 (2-3) : 99 - 127
  • [34] REAL-TIME RECOGNITION WITH CELLULAR AUTOMATA - A MEANINGFUL EXAMPLE
    TERRIER, V
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1993, 27 (02): : 97 - 120
  • [35] Real-time learning at Maryland
    Triantis, A
    QUANTITATIVE FINANCE, 2003, 3 (06) : C106 - C108
  • [36] Real-Time Reinforcement Learning
    Ramstedt, Simon
    Pal, Christopher
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [37] Real-time robot learning
    Bhanu, B
    Leang, P
    Cowden, C
    Lin, YQ
    Patterson, M
    2001 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS I-IV, PROCEEDINGS, 2001, : 491 - 498
  • [38] Analytic real-time analysis and timed automata: a hybrid methodology for the performance analysis of embedded real-time systems
    Kai Lampka
    Simon Perathoner
    Lothar Thiele
    Design Automation for Embedded Systems, 2010, 14 : 193 - 227
  • [39] Analytic real-time analysis and timed automata: a hybrid methodology for the performance analysis of embedded real-time systems
    Lampka, Kai
    Perathoner, Simon
    Thiele, Lothar
    DESIGN AUTOMATION FOR EMBEDDED SYSTEMS, 2010, 14 (03) : 193 - 227
  • [40] Decidability of the Initial-State Opacity of Real-Time Automata
    Wang, Lingtai
    Zhan, Naijun
    SYMPOSIUM ON REAL-TIME AND HYBRID SYSTEMS: ESSAYS DEDICATED TO PROFESSOR CHAOCHEN ZHOU ON THE OCCASION OF HIS 80TH BIRTHDAY, 2018, 11180 : 44 - 60