Learning real-time automata

被引:0
|
作者
Jie An
Lingtai Wang
Bohua Zhan
Naijun Zhan
Miaomiao Zhang
机构
[1] Tongji University,School of Software Engineering
[2] Chinese Academy of Sciences,State Key Laboratory of Computer Science, Institute of Software
[3] University of Chinese Academy of Sciences,undefined
来源
关键词
automaton learning; active learning; real-time automata;
D O I
暂无
中图分类号
学科分类号
摘要
Real-time automata (RTAs) are a subclass of timed automata with only one clock which resets at each transition. In this paper, we present an active learning algorithm for deterministic real-time automata (DRTAs) in both continuous-time semantics and discrete-time semantics. For a target language recognized by a DRTA A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{A}$$\end{document}, we convert the problem of learning DRTA A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{A}$$\end{document} to the problem of learning a canonical real-time automaton A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{A}$$\end{document} with the same recognized language, i.e., L(A)=L(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}(\mathbb{A})=\mathcal{L}(\mathcal{A})$$\end{document}. The algorithm is inspired by existing learning algorithms for symbolic automata.
引用
收藏
相关论文
共 50 条
  • [1] Learning real-time automata
    Jie AN
    Lingtai WANG
    Bohua ZHAN
    Naijun ZHAN
    Miaomiao ZHANG
    Science China(Information Sciences), 2021, 64 (09) : 57 - 73
  • [2] Learning real-time automata
    An, Jie
    Wang, Lingtai
    Zhan, Bohua
    Zhan, Naijun
    Zhang, Miaomiao
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (09)
  • [3] Learning Nondeterministic Real-Time Automata
    An, Jie
    Zhan, Bohua
    Zhan, Naijun
    Zhang, Miaomiao
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2021, 20 (05)
  • [4] Real-time traffic allocation using learning automata
    Economides, AA
    SMC '97 CONFERENCE PROCEEDINGS - 1997 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5: CONFERENCE THEME: COMPUTATIONAL CYBERNETICS AND SIMULATION, 1997, : 3307 - 3312
  • [5] ON REAL-TIME CELLULAR AUTOMATA AND TRELLIS AUTOMATA
    CHOFFRUT, C
    CULIK, K
    ACTA INFORMATICA, 1984, 21 (04) : 393 - 407
  • [6] The Opacity of Real-Time Automata
    Wang, Lingtai
    Zhan, Naijun
    An, Jie
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (11) : 2845 - 2856
  • [7] ON REAL-TIME AND LINEAR TIME CELLULAR AUTOMATA
    BUCHER, W
    CULIK, K
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1984, 18 (04): : 307 - 325
  • [8] Fast learning automata for high-speed real-time applications
    Obaidat, MS
    Papadimitriou, GI
    Pomportsis, AS
    ICECS 2000: 7TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS & SYSTEMS, VOLS I AND II, 2000, : 633 - 636
  • [9] REAL-TIME SCHEDULING BY QUEUE AUTOMATA
    BREVEGLIERI, L
    CHERUBINI, A
    CRESPIREGHIZZI, S
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 571 : 131 - 147
  • [10] A PROPERTY OF REAL-TIME TRELLIS AUTOMATA
    YU, S
    DISCRETE APPLIED MATHEMATICS, 1986, 15 (01) : 117 - 119