Small complete caps from singular cubics, II

被引:0
|
作者
Nurdagül Anbar
Daniele Bartoli
Irene Platoni
Massimo Giulietti
机构
[1] Sabanci University,Faculty of Engineering and Natural Sciences
[2] University of Perugia,Dipartimento di Matematica e Informatica
[3] University of Trento,Dipartimento di Matematica
来源
Journal of Algebraic Combinatorics | 2015年 / 41卷
关键词
Galois affine spaces; Bicovering arcs; Complete caps; Quasi-perfect codes; Cubic curves; 51E20;
D O I
暂无
中图分类号
学科分类号
摘要
Small complete arcs and caps in Galois spaces over finite fields Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} with characteristic greater than three are constructed from singular cubic curves. For m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} a divisor of q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q+1$$\end{document} or q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q-1$$\end{document}, complete plane arcs of size approximately q/m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q/m$$\end{document} are obtained, provided that (m,6)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m,6)=1$$\end{document} and m<14q1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m<\frac{1}{4}q^{1/4}$$\end{document}. If in addition m=m1m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=m_1m_2$$\end{document} with (m1,m2)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m_1,m_2)=1$$\end{document}, then complete caps in affine spaces of dimension N≡0(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\equiv 0 \pmod 4$$\end{document} with roughly m1+m2mqN/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{m_1+m_2}{m}q^{N/2}$$\end{document} points are described. These results substantially widen the spectrum of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}s for which complete arcs in AG(2,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AG(2,q)$$\end{document} of size approximately q3/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{3/4}$$\end{document} can be constructed. Complete caps in AG(N,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AG(N,q)$$\end{document} with roughly q(4N-1)/8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{(4N-1)/8}$$\end{document} points are also provided. For infinitely many q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}s, these caps are the smallest known complete caps in AG(N,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AG(N,q)$$\end{document}, N≡0(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \equiv 0 \pmod 4$$\end{document}.
引用
收藏
页码:185 / 216
页数:31
相关论文
共 50 条
  • [41] Complete subdivision algorithms, II: Isotopic meshing of singular algebraic curves
    Burr, Michael
    Choi, Sung Woo
    Galehouse, Ben
    Yap, Chee K.
    JOURNAL OF SYMBOLIC COMPUTATION, 2012, 47 (02) : 131 - 152
  • [42] Large Caps in Small Spaces
    Yves Edel
    Jürgen Bierbrauer
    Designs, Codes and Cryptography, 2001, 23 : 197 - 212
  • [43] Golden Age Small Caps
    Oberweis, Jim
    FORBES, 2010, 186 (08): : 40 - 40
  • [44] THE NEXT ACT FOR SMALL CAPS
    Oberweis, Jim
    FORBES, 2014, 194 (08): : 66 - 66
  • [45] SMALL CAPS WITH BIG YIELDS
    Dobosz, John
    FORBES, 2016, 198 (09): : 98 - 98
  • [46] Complete caps in projective space which are disjoint from a subspace of codimension two
    Wehlau, DL
    FINITE GEOMETRIES, PROCEEDINGS, 2001, 3 : 347 - 361
  • [47] Large caps in small spaces
    Edel, Y
    Bierbrauer, J
    DESIGNS CODES AND CRYPTOGRAPHY, 2001, 23 (02) : 197 - 212
  • [48] Small caps take off!
    Lee, J
    FORTUNE, 1998, 138 (10) : 312 - 313
  • [49] DOWN BUT NOT OUT SMALL CAPS
    Oberweis, Jim
    FORBES, 2015, 195 (03): : 62 - 62
  • [50] Small caps - Small stocks, wide web
    Gallagher, L
    FORBES, 2000, 165 (12): : 100 - 100