Small complete caps from singular cubics, II

被引:0
|
作者
Nurdagül Anbar
Daniele Bartoli
Irene Platoni
Massimo Giulietti
机构
[1] Sabanci University,Faculty of Engineering and Natural Sciences
[2] University of Perugia,Dipartimento di Matematica e Informatica
[3] University of Trento,Dipartimento di Matematica
来源
关键词
Galois affine spaces; Bicovering arcs; Complete caps; Quasi-perfect codes; Cubic curves; 51E20;
D O I
暂无
中图分类号
学科分类号
摘要
Small complete arcs and caps in Galois spaces over finite fields Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} with characteristic greater than three are constructed from singular cubic curves. For m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document} a divisor of q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q+1$$\end{document} or q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q-1$$\end{document}, complete plane arcs of size approximately q/m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q/m$$\end{document} are obtained, provided that (m,6)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m,6)=1$$\end{document} and m<14q1/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m<\frac{1}{4}q^{1/4}$$\end{document}. If in addition m=m1m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=m_1m_2$$\end{document} with (m1,m2)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m_1,m_2)=1$$\end{document}, then complete caps in affine spaces of dimension N≡0(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\equiv 0 \pmod 4$$\end{document} with roughly m1+m2mqN/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{m_1+m_2}{m}q^{N/2}$$\end{document} points are described. These results substantially widen the spectrum of q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}s for which complete arcs in AG(2,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AG(2,q)$$\end{document} of size approximately q3/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{3/4}$$\end{document} can be constructed. Complete caps in AG(N,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AG(N,q)$$\end{document} with roughly q(4N-1)/8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q^{(4N-1)/8}$$\end{document} points are also provided. For infinitely many q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}s, these caps are the smallest known complete caps in AG(N,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AG(N,q)$$\end{document}, N≡0(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \equiv 0 \pmod 4$$\end{document}.
引用
收藏
页码:185 / 216
页数:31
相关论文
共 50 条
  • [1] Small complete caps from singular cubics, II
    Anbar, Nurdagul
    Bartoli, Daniele
    Platoni, Irene
    Giulietti, Massimo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (01) : 185 - 216
  • [2] Small Complete Caps from Singular Cubics
    Anbar, Nurdagul
    Bartoli, Daniele
    Giulietti, Massimo
    Platoni, Irene
    JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (10) : 409 - 424
  • [3] Computer search for small complete caps
    Patric R. J. Österg»rd
    Journal of Geometry, 2000, 69 (1-2) : 172 - 179
  • [4] Bicovering arcs and small complete caps from elliptic curves
    Anbar, Nurdagul
    Giulietti, Massimo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 38 (02) : 371 - 392
  • [5] Bicovering arcs and small complete caps from elliptic curves
    Nurdagül Anbar
    Massimo Giulietti
    Journal of Algebraic Combinatorics, 2013, 38 : 371 - 392
  • [6] SMALL COMPLETE CAPS IN GALOIS SPACES
    Faina, Giorgio
    Pasticci, Fabio
    Schmidt, Lorenzo
    ARS COMBINATORIA, 2012, 105 : 299 - 303
  • [7] Small complete caps in spaces of even characteristic
    Pambianco, F
    Storme, L
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1996, 75 (01) : 70 - 84
  • [8] Small complete caps in Galois affine spaces
    Giulietti, Massimo
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2007, 25 (02) : 149 - 168
  • [9] Small complete caps in Galois affine spaces
    Massimo Giulietti
    Journal of Algebraic Combinatorics, 2007, 25 : 149 - 168
  • [10] A note on small complete caps in the Klein quadric
    Blokhuis, A
    Sziklai, P
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1998, 5 (2-3) : 159 - 161