Strong-Disorder Paramagnetic-Ferromagnetic Fixed Point in the Square-Lattice ±J Ising Model

被引:0
|
作者
Francesco Parisen Toldin
Andrea Pelissetto
Ettore Vicari
机构
[1] Max-Planck-Institut für Metallforschung,Institut für Theoretische und Angewandte Physik
[2] Universität Stuttgart,Dipartimento di Fisica
[3] Università di Roma “La Sapienza” and INFN,Dipartimento di Fisica
[4] Università di Pisa and INFN,undefined
来源
关键词
Two-dimensional Edwards-Anderson model; Two-dimensional Ising spin glass; Critical exponents; Monte Carlo simulations; Strong-disorder fixed point;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the random-bond ±J Ising model on a square lattice as a function of the temperature T and of the disorder parameter p (p=1 corresponds to the pure Ising model). We investigate the critical behavior along the paramagnetic-ferromagnetic transition line at low temperatures, below the temperature of the multicritical Nishimori point at T*=0.9527(1), p*=0.89083(3). We present finite-size scaling analyses of Monte Carlo results at two temperature values, T≈0.645 and T=0.5. The results show that the paramagnetic-ferromagnetic transition line is reentrant for T<T*, that the transitions are continuous and controlled by a strong-disorder fixed point with critical exponents ν=1.50(4), η=0.128(8), and β=0.095(5). This fixed point is definitely different from the Ising fixed point controlling the paramagnetic-ferromagnetic transitions for T>T*. Our results for the critical exponents are consistent with the hyperscaling relation 2β/ν−η=d−2=0.
引用
收藏
页码:1039 / 1061
页数:22
相关论文
共 50 条