Split Extensions and Actions of Bialgebras and Hopf Algebras

被引:0
|
作者
Florence Sterck
机构
[1] Université catholique de Louvain,Institut de Recherche en Mathématique et Physique
[2] Université Libre de Bruxelles,Département de Mathématique
来源
关键词
(Non-associative) bialgebras; (Non-associative) Hopf algebras; Actions; Split extensions; Split short five lemma; 16T10; 16T05; 18C40; 18E99; 18M05; 17D99; 16S40;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a notion of split extension of (non-associative) bialgebras which generalizes the notion of split extension of magmas introduced by M. Gran, G. Janelidze and M. Sobral. We show that this definition is equivalent to the notion of action of (non-associative) bialgebras. We particularize this equivalence to (non-associative) Hopf algebras by defining split extensions of (non-associative) Hopf algebras and proving that they are equivalent to actions of (non-associative) Hopf algebras. Moreover, we prove the validity of the Split Short Five Lemma for these kinds of split extensions, and we examine some examples.
引用
收藏
页码:331 / 377
页数:46
相关论文
共 50 条
  • [21] Oriented Hopf Algebras and their Actions
    Chris Plyley
    David Riley
    Algebras and Representation Theory, 2015, 18 : 895 - 906
  • [22] Hopf actions and Azumaya algebras
    Yang, SL
    Wang, ZX
    ALGEBRA COLLOQUIUM, 1997, 4 (04) : 367 - 370
  • [23] Actions of cocommutative Hopf algebras
    Lorenz, Martin
    Nguyen, Bach
    Yammine, Ramy
    JOURNAL OF ALGEBRA, 2020, 546 : 703 - 722
  • [24] ON ACTIONS OF CONNECTED HOPF ALGEBRAS
    Yammine, Ramy
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (05) : 1973 - 1983
  • [25] Hopf actions on vertex algebras
    Dong, Chongying
    Ren, Li
    Yang, Chao
    JOURNAL OF ALGEBRA, 2024, 644 : 1 - 22
  • [26] Oriented Hopf Algebras and their Actions
    Plyley, Chris
    Riley, David
    ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (04) : 895 - 906
  • [27] On actions of Hopf algebras on commutative algebras and their invariants
    Tyc A.
    Annali dell’Università di Ferrara, 2005, 51 (1): : 99 - 103
  • [28] CLEFT EXTENSIONS OF HOPF-ALGEBRAS
    BYOTT, NP
    JOURNAL OF ALGEBRA, 1993, 157 (02) : 405 - 429
  • [29] A note on Frobenius extensions in Hopf algebras
    Doi, Y
    COMMUNICATIONS IN ALGEBRA, 1997, 25 (11) : 3699 - 3710
  • [30] ORE EXTENSIONS OF MULTIPLIER HOPF ALGEBRAS
    Zhao, Lihui
    Lu, Diming
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (01) : 248 - 272