Polynomial forms for quantum elliptic Calogero–Moser Hamiltonians

被引:0
|
作者
M. G. Matushko
V. V. Sokolov
机构
[1] National Research University “Higher School of Economics,Landau Institute for Theoretical Physics
[2] ”,undefined
[3] RAS,undefined
来源
关键词
elliptic Calogero–Moser Hamiltonian; universal enveloping algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We hypothesize the form of a transformation reducing the elliptic AN Calogero–Moser operator to a differential operator with polynomial coefficients. We verify this hypothesis for N ≤ 3 and, moreover, give the corresponding polynomial operators explicitly.
引用
收藏
页码:480 / 490
页数:10
相关论文
共 50 条
  • [31] Separation of variables for the A3 elliptic Calogero-Moser system
    Mangazeev, VV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (19): : 4183 - 4195
  • [32] On elliptic Calogero-Moser systems for complex crystallographic reflection groups
    Etingof, Pavel
    Felder, Giovanni
    Ma, Xiaoguang
    Veselov, Alexander
    JOURNAL OF ALGEBRA, 2011, 329 (01) : 107 - 129
  • [33] Real-Normalized Differentials and the Elliptic Calogero-Moser System
    Grushevsky, Samuel
    Krichever, Igor
    COMPLEX GEOMETRY AND DYNAMICS, 2015, : 123 - 137
  • [34] ON THE 2-GAP LOCUS FOR THE ELLIPTIC CALOGERO-MOSER MODEL
    ENOLSKII, VZ
    EILBECK, JC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (04): : 1069 - 1088
  • [35] Elliptic solutions to matrix KP hierarchy and spin generalization of elliptic Calogero-Moser model
    Prokofev, V
    Zabrodin, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (06)
  • [36] Deformed quantum Calogero-Moser problems and Lie superalgebras
    Sergeev, AN
    Veselov, AP
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 245 (02) : 249 - 278
  • [37] New integrable deformations of the Calogero-Moser quantum problem
    Veselov, AP
    Feigin, MV
    Chalykh, OA
    RUSSIAN MATHEMATICAL SURVEYS, 1996, 51 (03) : 573 - 574
  • [38] Deformed Quantum Calogero-Moser Problems and Lie Superalgebras
    A.N. Sergeev
    A.P. Veselov
    Communications in Mathematical Physics, 2004, 245 : 249 - 278
  • [39] INTEGRABILITY AND ALGEBRAIC STRUCTURE OF THE QUANTUM CALOGERO-MOSER MODEL
    WADATI, M
    HIKAMI, K
    UJINO, H
    CHAOS SOLITONS & FRACTALS, 1993, 3 (06) : 627 - 636
  • [40] Degenerate integrability of quantum spin Calogero-Moser systems
    Reshetikhin, Nicolai
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (01) : 187 - 200