Spherical Designs and Generalized Sum-Free Sets in Abelian Groups

被引:0
|
作者
Béla Bajnok
机构
[1] Gettysburg College,Department of Mathematics
来源
关键词
Spherical design; sum-free set; sidon-set;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the concepts of sum-freesets and Sidon-sets of combinatorial number theory with the aimto provide explicit constructions for spherical designs. We calla subset S of the (additive) abelian group Gt-free if for all non-negative integers kand l with k+l ≤ t, the sum of k(not necessarily distinct) elements of S does notequal the sum of l (not necessarily distinct) elementsof S unless k=l and the two sums containthe same terms. Here we shall give asymptotic bounds for thesize of a largest t-free set in Zn,and for t ≤ 3 discuss how t-freesets in Zn can be used to constructspherical t-designs.
引用
收藏
页码:11 / 18
页数:7
相关论文
共 50 条
  • [41] On a class of aperiodic sum-free sets
    Calkin, NJ
    Erdos, P
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 120 : 1 - 5
  • [42] A NOTE ON THE DENSITY OF SUM-FREE SETS
    LUCZAK, T
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 70 (02) : 334 - 336
  • [43] Notes on sum-free and related sets
    Cameron, PJ
    Erdos, P
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2): : 95 - 107
  • [44] On the structure of sum-free sets, 2
    Deshouillers, JM
    Freiman, GA
    Sós, V
    Temkin, M
    [J]. ASTERISQUE, 1999, (258) : 149 - 161
  • [45] SUM-FREE SETS AND RAMSEY NUMBERS
    HANSON, D
    [J]. DISCRETE MATHEMATICS, 1976, 14 (01) : 57 - 61
  • [46] On the number of maximal sum-free sets
    Luczak, T
    Schoen, T
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) : 2205 - 2207
  • [47] ON THE STRUCTURE AND THE NUMBER OF SUM-FREE SETS
    FREIMAN, GA
    [J]. ASTERISQUE, 1992, (209) : 195 - 201
  • [48] On the number of sum-free triplets of sets
    Araujo, Igor
    Balogh, Jozsef
    Garcia, Ramon, I
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04): : 1 - 17
  • [49] Large sum-free sets in ℤ/pℤ
    Vsevolod F. Lev
    [J]. Israel Journal of Mathematics, 2006, 154 : 221 - 233
  • [50] Folner sequences and sum-free sets
    Eberhard, Sean
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2015, 47 : 21 - 28