Adaptive hierarchical upscaling of flow in heterogeneous reservoirs based on an a posteriori error estimate

被引:0
|
作者
K.J. Hersvik
M.S. Espedal
机构
[1] University of Bergen,Department of Applied Mathematics
来源
关键词
heterogeneous media; two-phase fluid flow; upscaling; domain decomposition; hierarchical modelling;
D O I
暂无
中图分类号
学科分类号
摘要
This paper treats the upscaling of the absolute permeability in a heterogeneous reservoir. By replacing the fine scale permeability tensor with an upscaled, or effective permeability tensor, a modelling error is introduced. An a posteriori error estimate on this modelling error is formulated and tested. An implementation of the theory, based on domain decomposition coupled with a hierarchical representation of the absolute permeability field, is given. As hierarchical basis functions we have chosen the Haar system, which leads to a wavelet representation of the permeability. The wavelet representation offers a natural upscaling technique which resembles the highcut filters commonly used in signal analysis. This procedure represents an adaptive upscaling method. The numerical results show that this method conserves both the dissipation and the mean velocity in the problem fairly well. The a posteriori error estimate on the modelling error coupled with domain decomposition methods constitutes a powerful modelling tool.
引用
收藏
页码:311 / 336
页数:25
相关论文
共 50 条
  • [31] Adaptive solution of linear systems of equations based on a posteriori error estimators
    Anciaux-Sedrakian, A.
    Grigori, L.
    Jorti, Z.
    Papez, J.
    Yousef, S.
    NUMERICAL ALGORITHMS, 2020, 84 (01) : 331 - 364
  • [32] A robust a posteriori error estimate for hp-adaptive DG methods for convection-diffusion equations
    Zhu, Liang
    Schoetzau, Dominik
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) : 971 - 1005
  • [33] A-POSTERIORI ERROR ESTIMATE FOR A HETEROGENEOUS MULTISCALE APPROXIMATION OF ADVECTION-DIFFUSION PROBLEMS WITH LARGE EXPECTED DRIFT
    Henning, Patrick
    Ohlberger, Mario
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (05): : 1393 - 1420
  • [34] RESIDUAL-BASED A POSTERIORI ERROR ESTIMATE FOR INTERFACE PROBLEMS: NONCONFORMING LINEAR ELEMENTS
    Cai, Zhiqiang
    He, Cuiyu
    Zhang, Shun
    MATHEMATICS OF COMPUTATION, 2017, 86 (304) : 617 - 636
  • [35] An upscaling method for one‐phase flow in heterogeneous reservoirs. A weighted output least squares (WOLS) approach
    Bjørn Fredrik Nielsen
    Aslak Tveito
    Computational Geosciences, 1998, 2 : 93 - 123
  • [36] A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates
    Huang, Weizhang
    Kamenski, Lennard
    Lang, Jens
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (06) : 2179 - 2198
  • [37] An a posteriori-based adaptive preconditioner for controlling a local algebraic error norm
    A. Anciaux-Sedrakian
    L. Grigori
    Z. Jorti
    S. Yousef
    BIT Numerical Mathematics, 2021, 61 : 209 - 235
  • [38] An a posteriori-based adaptive preconditioner for controlling a local algebraic error norm
    Anciaux-Sedrakian, A.
    Grigori, L.
    Jorti, Z.
    Yousef, S.
    BIT NUMERICAL MATHEMATICS, 2021, 61 (01) : 209 - 235
  • [39] Adaptive mesh techniques based on a posteriori error estimates for an inverse Cauchy problem
    Bergam, A.
    Chakib, A.
    Nachaoui, A.
    Nachaoui, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 865 - 878
  • [40] ON THE A-POSTERIORI ESTIMATION OF THE MODELING ERROR FOR THE HEAT-CONDUCTION IN A PLATE AND ITS USE FOR ADAPTIVE HIERARCHICAL MODELING
    BABUSKA, I
    LEE, I
    SCHWAB, C
    APPLIED NUMERICAL MATHEMATICS, 1994, 14 (1-3) : 5 - 21