Quasi-exact solvability beyond the sl(2) algebraization

被引:0
|
作者
D. Gómez-Ullate
N. Kamran
R. Milson
机构
[1] Universitat Politècnica de Catalunya,Departamento de Matemàtica Aplicada I
[2] ETSEIB,Department of Mathematics and Statistics
[3] McGill University,Department of Mathematics and Statistics
[4] Dalhousie University,undefined
来源
Physics of Atomic Nuclei | 2007年 / 70卷
关键词
03.65.Fd;
D O I
暂无
中图分类号
学科分类号
摘要
We present evidence to suggest that the study of one-dimensional quasi-exactly solvable (QES) models in quantum mechanics should be extended beyond the usual sl(2) approach. The motivation is twofold: We first show that certain quasi-exactly solvable potentials constructed with the sl(2) Liealgebraic method allow for a new larger portion of the spectrum to be obtained algebraically. This is done via another algebraization in which the algebraic Hamiltonian cannot be expressed as a polynomial in the generators of sl(2). We then show an example of a new quasi-exactly solvable potential which cannot be obtained within the Lie algebraic approach.
引用
收藏
页码:520 / 528
页数:8
相关论文
共 50 条
  • [41] Singular potentials with quasi-exact Dirac bound states
    Znojil, M
    [J]. PHYSICS LETTERS A, 1999, 255 (1-2) : 1 - 6
  • [42] A SMOOTH QUASI-EXACT PENALTY FUNCTION FOR NONLINEAR PROGRAMMING
    李兴斯
    [J]. Science Bulletin, 1992, (10) : 806 - 809
  • [43] Quantum Inozemtsev model, quasi-exact solvability and N-fold supersymmetry (vol 34, pg 9533, 2001)
    Sasaki, R
    Takasaki, K
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (47): : 10335 - 10335
  • [44] Quasi-exact logic functions through classification trees
    Tenace, Valerio
    Calimera, Andrea
    [J]. INTEGRATION-THE VLSI JOURNAL, 2018, 63 : 248 - 255
  • [45] Extended study on a quasi-exact solution of the Bohr Hamiltonian
    Budaca, R.
    Buganu, P.
    Chabab, M.
    Lahbas, A.
    Oulne, M.
    [J]. ANNALS OF PHYSICS, 2016, 375 : 65 - 90
  • [46] HEUN EQUATIONS AND QUASI EXACT SOLVABILITY
    BRIHAYE, Y
    GILLER, S
    KOSINSKI, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (02): : 421 - 431
  • [47] Quasi-exact description of the γ-unstable shape phase transition
    Lahbas, A.
    Buganu, P.
    Budaca, R.
    [J]. MODERN PHYSICS LETTERS A, 2020, 35 (12)
  • [48] Quasi-exact treatment of the relativistic generalized isotonic oscillator
    Agboola, D.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (05)
  • [49] Quasi-exact helical cone beam reconstruction for micro CT
    Hu, JC
    Johnson, R
    Molthen, R
    Haworth, S
    Dawson, C
    [J]. 2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, 2002, : 681 - 684
  • [50] Quasi-exact linear spring countergravity system for robotic manipulators
    Pons, JL
    Ceres, R
    Jimenez, AR
    [J]. MECHANISM AND MACHINE THEORY, 1998, 33 (1-2) : 59 - 70