Erdős–Ko–Rado and Hilton–Milner Type Theorems for Intersecting Chains in Posets

被引:0
|
作者
Péter L. Erdős
Ákos Seress
László A. Székely
机构
[1] Alfréd Rényi Institute of Mathematics,
[2] Hungarian Academy of Sciences; Budapest,undefined
[3] 1053 Hungary; E-mail: elp@math-inst.hu,undefined
[4] Department of Mathematics,undefined
[5] The Ohio State University; Columbus,undefined
[6] OH 43210,undefined
[7] USA; E-mail: akos@math.ohio-state.edu,undefined
[8] Department of Mathematics,undefined
[9] University of South Carolina; Columbia,undefined
[10] SC 29208,undefined
[11] USA; E-mail: laszlo@math.sc.edu,undefined
来源
Combinatorica | 2000年 / 20卷
关键词
AMS Subject Classification (1991) Classes:  05D05, 06A06;
D O I
暂无
中图分类号
学科分类号
摘要
-intersecting k-chains in posets using the kernel method. These results are common generalizations of the original EKR and HM theorems, and our earlier results for intersecting k-chains in the Boolean algebra. For intersecting k-chains in the c-truncated Boolean algebra we also prove an exact EKR type theorem (for all n) using the shift method. An application of the general theorem gives a similar result for t-intersecting chains if n is large enough.
引用
收藏
页码:27 / 45
页数:18
相关论文
共 50 条
  • [21] A Bollobás-Type Problem: From Root Systems to Erdős-Ko-Rado
    Browne, Patrick J.
    Gashi, Qendrim R.
    Cathain, Padraig O.
    ANNALS OF COMBINATORICS, 2024,
  • [22] An Erdös-Ko-Rado theorem for restricted signed sets
    Yu-shuang Li
    Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 107 - 112
  • [23] The Erdös-Ko-Rado theorem for twisted Grassmann graphs
    Hajime Tanaka
    Combinatorica, 2012, 32 : 735 - 740
  • [24] An Erds-Ko-Rado Theorem for Restricted Signed Sets
    Yu-shuang Li School of Science
    Acta Mathematicae Applicatae Sinica(English Series), 2010, 26 (01) : 107 - 112
  • [25] Erdos-Ko-Rado type theorems for simplicial complexes
    Fakhari, Seyed Amin Seyed
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [26] Theorems of Erdos-Ko-Rado type in polar spaces
    Pepe, Valentina
    Storme, Leo
    Vanhove, Frederic
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (04) : 1291 - 1312
  • [27] Theorems of ErdAs-Ko-Rado type in geometrical settings
    De Boeck, Maarten
    Storme, Leo
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (07) : 1333 - 1348
  • [28] Erdos-Ko-Rado-type theorems for colored sets
    Li, Yu-Shuang
    Wang, Jun
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [29] The Katona cycle proof of the Erdős–Ko–Rado theorem and its possibilities
    Peter Borg
    Karen Meagher
    Journal of Algebraic Combinatorics, 2016, 43 : 915 - 939
  • [30] An Erdős-Ko-Rado theorem for finite classical polar spaces
    Klaus Metsch
    Journal of Algebraic Combinatorics, 2016, 43 : 375 - 397