We study the Hn-Yamabe constants of Riemannian products \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(\mathbf{H}^{n} \times M^{m} , g_{h}^{n} +g)$\end{document}, where (M,g) is a compact Riemannian manifold of constant scalar curvature and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$g_{h}^{n}$\end{document} is the hyperbolic metric on Hn. Numerical calculations can be carried out due to the uniqueness of (positive, finite energy) solutions of the equation Δu−λu+uq=0 on hyperbolic space Hn under appropriate bounds on the parameters λ,q, as shown by G. Mancini and K. Sandeep. We do explicit numerical estimates in the cases (n,m)=(2,2), (2,3), and (3,2).