2D Dilaton Gravity and the Weil-Petersson Volumes with Conical Defects
被引:5
|
作者:
Eberhardt, Lorenz
论文数: 0引用数: 0
h-index: 0
机构:
Inst Adv Study, Einstein Dr, Princeton, NJ 08540 USAInst Adv Study, Einstein Dr, Princeton, NJ 08540 USA
Eberhardt, Lorenz
[1
]
Turiaci, Gustavo J.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Adv Study, Einstein Dr, Princeton, NJ 08540 USA
Univ Washington, Phys Dept, Seattle, WA USAInst Adv Study, Einstein Dr, Princeton, NJ 08540 USA
Turiaci, Gustavo J.
[1
,2
]
机构:
[1] Inst Adv Study, Einstein Dr, Princeton, NJ 08540 USA
We derive the Weil-Petersson measure on the moduli space of hyperbolic surfaces with defects of arbitrary opening angles and use this to compute its volume. We conjecture a matrix integral computing the corresponding volumes and confirm agreement in simple cases. We combine this mathematical result with the equivariant localization approach to Jackiw-Teitelboim gravity to justify a proposed exact solution of pure 2d dilaton gravity for a large class of dilaton potentials.