Top-K Miner: top-K identical frequent itemsets discovery without user support threshold

被引:0
|
作者
Jawad Saif-Ur-Rehman
Asad Ashraf
Abdus Habib
机构
[1] Kohat University of Science and Technology,Institute of Information Technology
[2] Abasyn University,Computer Science Department
来源
关键词
Frequent itemsets; Association rules; Identical frequent itemsets (IFIs); Candidate- itemsets-search tree;
D O I
暂无
中图分类号
学科分类号
摘要
Frequent itemsets (FIs) mining is a prime research area in association rule mining. The customary techniques find FIs or its variants on the basis of either support threshold value or by setting two generic parameters, i.e., N (topmost itemsets) and Kmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_\mathrm{{max}}$$\end{document} (size of the itemsets). However, users are unable to mine the absolute desired number of patterns because they tune these approaches with their approximate parameters settings. We proposed a novel technique, top-K Miner that does not require setting of support threshold, N and Kmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_\mathrm{{max}}$$\end{document} values. Top-K Miner requires the user to specify only a single parameter, i.e., K to find the desired number of frequent patterns called identical frequent itemsets (IFIs). Top-K Miner uses a novel candidate production algorithm called join-FI algorithm. This algorithm uses frequent 2-itemsets to yield one or more candidate itemsets of arbitrary size. The join-FI algorithm follows bottom-up recursive technique to construct candidate-itemsets-search tree. Finally, the generated candidate itemsets are manipulated by the Maintain-Top-K_List algorithm to produce Top-K_List of the IFIs. The proposed top-K Miner algorithm significantly outperforms the generic benchmark techniques even when they are running with the ideal parameters settings.
引用
收藏
页码:741 / 762
页数:21
相关论文
共 50 条
  • [21] Top-k Frequent Itemsets via Differentially Private FP-trees
    Lee, Jaewoo
    Clifton, Christopher W.
    [J]. PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 931 - 940
  • [22] Mining top-k high utility itemsets with effective threshold raising strategies
    Krishnamoorthy, Srikumar
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2019, 117 : 148 - 165
  • [23] Targeted mining of top-k high utility itemsets
    Huang, Shan
    Gan, Wensheng
    Miao, Jinbao
    Han, Xuming
    Fournier-Viger, Philippe
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [24] TGP: Mining Top-K Frequent Closed Graph Pattern without Minimum Support
    Li, Yuhua
    Lin, Quan
    Li, Ruixuan
    Duan, Dongsheng
    [J]. ADVANCED DATA MINING AND APPLICATIONS, ADMA 2010, PT I, 2010, 6440 : 537 - 548
  • [25] Mining Top-k Frequent-regular Itemsets from Incremental Transactional Database
    Tagmatcha, Bandit
    Amphawan, Komate
    [J]. 2018 5TH INTERNATIONAL CONFERENCE ON ADVANCED INFORMATICS: CONCEPTS, THEORY AND APPLICATIONS (ICAICTA 2018), 2018, : 231 - 237
  • [26] A Differentially Private Scheme for Top-k Frequent Itemsets Mining Over Data Streams
    Liang W.-J.
    Chen H.
    Zhao S.-Y.
    Li C.-P.
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (04): : 741 - 760
  • [27] Efficient All Top-k Computation-A Unified Solution for All Top-k, Reverse Top-k and Top-m Influential Queries
    Ge, Shen
    U, Leong Hou
    Mamoulis, Nikos
    Cheung, David W.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2013, 25 (05) : 1015 - 1027
  • [28] Efficient Algorithms for Mining Top-K High Utility Itemsets
    Tseng, Vincent S.
    Wu, Cheng-Wei
    Fournier-Viger, Philippe
    Yu, Philip S.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (01) : 54 - 67
  • [29] Mining of top-k high utility itemsets with negative utility
    Sun, Rui
    Han, Meng
    Zhang, Chunyan
    Shen, Mingyao
    Du, Shiyu
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (03) : 5637 - 5652
  • [30] TKG: Efficient Mining of Top-K Frequent Subgraphs
    Fournier-Viger, Philippe
    Cheng, Chao
    Lin, Jerry Chun-Wei
    Yun, Unil
    Kiran, R. Uday
    [J]. BIG DATA ANALYTICS (BDA 2019), 2019, 11932 : 209 - 226