Citrus disease detection and classification using end-to-end anchor-based deep learning model

被引:0
|
作者
Sharifah Farhana Syed-Ab-Rahman
Mohammad Hesam Hesamian
Mukesh Prasad
机构
[1] University of Technology Sydney,School of Computer Science, Faculty of Engineering and IT (FEIT)
[2] University of Technology Sydney,School of Electrical and Data Engineering, Faculty of Engineering and IT (FEIT)
来源
Applied Intelligence | 2022年 / 52卷
关键词
Agriculture; Citrus diseases; CNNs; Deep learning; Disease recognition and classification; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
Plant diseases are the primary issue that reduces agricultural yield and production, causing significant economic losses and instability in the food supply. In plants, citrus is a fruit crop of great economic importance, produced and typically grown in about 140 countries. However, citrus cultivation is widely affected by various factors, including pests and diseases, resulted in significant yield and quality losses. In recent years, computer vision and machine learning have been widely used in plant disease detection and classification, which present opportunities for early disease detection and bring improvements in the field of agriculture. Early and accurate detection of plant diseases is crucial to reducing the disease’s spread and damage to the crop. Therefore, this paper employs a two-stage deep CNN model for plant disease detection and citrus diseases classification using leaf images. The proposed model consists of two main stages; (a) proposing the potential target diseased areas using a region proposal network; (b) classification of the most likely target area to the corresponding disease class using a classifier. The proposed model delivers 94.37% accuracy in detection and an average precision of 95.8%. The findings demonstrate that the proposed model identifies and distinguishes between the three different citrus diseases, namely citrus black spot, citrus bacterial canker and Huanglongbing. The proposed model serves as a useful decision support tool for growers and farmers to recognize and classify citrus diseases.
引用
收藏
页码:927 / 938
页数:11
相关论文
共 50 条
  • [31] DeepFMRI: End-to-end deep learning for functional connectivity and classification of ADHD using fMRI
    Riaz, Atif
    Asad, Muhammad
    Alonso, Eduardo
    Slabaugh, Greg
    JOURNAL OF NEUROSCIENCE METHODS, 2020, 335
  • [32] Efficient Tumor Detection and Classification Model Based on ViT in an End-to-End Architecture
    Huang, Ning-Yuan
    Liu, Chang-Xu
    IEEE ACCESS, 2024, 12 : 106096 - 106106
  • [33] An end-to-end model for rice yield prediction using deep learning fusion
    Chu, Zheng
    Yu, Jiong
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 174
  • [34] End-to-end deep learning model for underground utilities localization using GPR
    Su, Yang
    Wang, Jun
    Li, Danqi
    Wang, Xiangyu
    Hu, Lei
    Yao, Yuan
    Kang, Yuanxin
    AUTOMATION IN CONSTRUCTION, 2023, 149
  • [35] An End-to-end Deep Learning Scheme for Atrial Fibrillation Detection
    Jia, Yingjie
    Jiang, Haoyu
    Yang, Ping
    He, Xianliang
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [36] Deep Learning Methods for Bug Bite Classification: An End-to-End System
    Ilijoski, Bojan
    Dineva, Katarina Trojachanec
    Ribarski, Biljana Tojtovska
    Petrov, Petar
    Mladenovska, Teodora
    Trajanoska, Milena
    Gjorshoska, Ivana
    Lameski, Petre
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [37] Exploring End-to-end Deep Learning Applications for Event Classification at CMS
    Andrews, Michael
    Paulini, Manfred
    Gleyzer, Sergei
    Poczos, Barnabas
    23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018), 2019, 214
  • [38] An End-to-End framework for automatic detection of Atrial Fibrillation using Deep Residual Learning
    Nankani, Deepankar
    Baruah, Rashmi Dutta
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 690 - 695
  • [39] A Practical End-to-End Inventory Management Model with Deep Learning
    Qi, Meng
    Shi, Yuanyuan
    Qi, Yongzhi
    Ma, Chenxin
    Yuan, Rong
    Wu, Di
    Shen, Zuo-Jun
    MANAGEMENT SCIENCE, 2023, 69 (02) : 759 - 773
  • [40] End-to-end model for automatic seizure detection using supervised contrastive learning
    Li, Haotian
    Dong, Xingchen
    Zhong, Xiangwen
    Li, Chuanyu
    Cui, Haozhou
    Zhou, Weidong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133