On the theory of convergence and compactness for Beltrami equations

被引:0
|
作者
T.V. Lomako
机构
来源
关键词
Regular Solution; Quasiconformal Mapping; Regular Point; Ukrainian National Academy; Integral Type;
D O I
暂无
中图分类号
学科分类号
摘要
Theorems on convergence and compactness are proved for the classes of regular solutions of degenerate Beltrami equations with restrictions of integral type imposed on the dilatation.
引用
收藏
页码:393 / 402
页数:9
相关论文
共 50 条
  • [21] THE AVERAGING OF A SYSTEM OF BELTRAMI EQUATIONS
    ZHIKOV, VV
    SIRAZHUDINOV, MM
    DIFFERENTIAL EQUATIONS, 1988, 24 (01) : 50 - 56
  • [22] On ring solutions of Beltrami equations
    Ryazanov, V
    Srebro, U
    Yakubov, E
    JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1): : 117 - 150
  • [23] The Beltrami equations in three dimensions
    Hedrick, E. R.
    Ingold, Louis
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1925, 27 (1-4) : 556 - 562
  • [24] On the theory of the Beltrami equation
    Ryazanov V.
    Srebro U.
    Yakubov E.
    Ukrainian Mathematical Journal, 2006, 58 (11) : 1786 - 1798
  • [25] Beltrami Equations on Rossi Spheres
    Barletta, Elisabetta
    Dragomir, Sorin
    Esposito, Francesco
    MATHEMATICS, 2022, 10 (03)
  • [26] The Beltrami equations and prime ends
    Gutlyanskii V.
    Ryazanov V.
    Yakubov E.
    Journal of Mathematical Sciences, 2015, 210 (1) : 22 - 51
  • [27] On strong solutions of the Beltrami equations
    Ryazanov, V.
    Srebro, U.
    Yakubov, E.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (1-3) : 219 - 236
  • [28] On the Beltrami equations with two characteristics
    Bojarski, B.
    Gutlyanski, V.
    Ryazanov, V.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (10) : 935 - 950
  • [29] Convergence and compactness in Besov spaces
    Almira, JM
    Acosta, FP
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1998, 29 (10): : 1073 - 1082
  • [30] A categorical approach to convergence: Compactness
    Slapal, Josef
    TOPOLOGY AND ITS APPLICATIONS, 2016, 201 : 78 - 85