Low-light Image Enhancement via Dual Reflectance Estimation

被引:0
|
作者
Fan Jia
Tiange Wang
Tieyong Zeng
机构
[1] The Chinese University of Hong Kong,
来源
关键词
Retinex; Low-light image enhancement; Variational methods; Mumford-Shah model; 68U10; 65K10; 94A08;
D O I
暂无
中图分类号
学科分类号
摘要
Improving the quality of low-light images is a fundamental task with vast applications in computer vision. Retinex-based methods which decompose the images into reflectance and illumination components have been actively studied over the past years. In this paper, we propose a Retinex-based method with dual reflectance estimation. To be precise, we start with a simple reflectance estimation based on the HSV color space, which is then accompanied by another variational-based estimation of both the reflectance and illumination. Finally, we bring a new perspective to the Retinex model by reconstructing the normal-light image with a novel transformation map given by the estimated reflectance and illumination, which we call radiance mapping. Extensive experiments show that our method obtains outstanding results, both numerically and visually, compared to state-of-the-art methods.
引用
收藏
相关论文
共 50 条
  • [31] Low-Light Stereo Image Enhancement
    Huang, Jie
    Fu, Xueyang
    Xiao, Zeyu
    Zhao, Feng
    Xiong, Zhiwei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2978 - 2992
  • [32] Low-Light Hyperspectral Image Enhancement
    Li, Xuelong
    Li, Guanlin
    Zhao, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [33] Decoupled Low-Light Image Enhancement
    Hao, Shijie
    Han, Xu
    Guo, Yanrong
    Wang, Meng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)
  • [34] Flow Learning Based Dual Networks for Low-Light Image Enhancement
    Siyu Wang
    Changhui Hu
    Weilin Yi
    Ziyun Cai
    Mingliang Zhai
    Wankou Yang
    Neural Processing Letters, 2023, 55 : 8115 - 8130
  • [35] Low-light image enhancement based on multi-illumination estimation
    Xiaomei Feng
    Jinjiang Li
    Zhen Hua
    Fan Zhang
    Applied Intelligence, 2021, 51 : 5111 - 5131
  • [36] Low-light image enhancement based on multi-illumination estimation
    Feng, Xiaomei
    Li, Jinjiang
    Hua, Zhen
    Zhang, Fan
    APPLIED INTELLIGENCE, 2021, 51 (07) : 5111 - 5131
  • [37] An Effective Low-Light Image Enhancement Algorithm via Fusion Model
    Wang, Ya-Min
    Sun, Zhan-Li
    Han, Fu-Qiang
    INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2018, PT III, 2018, 10956 : 388 - 396
  • [38] Low-light image enhancement via adaptive frequency decomposition network
    Xiwen Liang
    Xiaoyan Chen
    Keying Ren
    Xia Miao
    Zhihui Chen
    Yutao Jin
    Scientific Reports, 13
  • [39] DRLIE: Flexible Low-Light Image Enhancement via Disentangled Representations
    Tang, Linfeng
    Ma, Jiayi
    Zhang, Hao
    Guo, Xiaojie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 2694 - 2707
  • [40] Low-Light Image Enhancement via Progressive-Recursive Network
    Li, Jinjiang
    Feng, Xiaomei
    Hua, Zhen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (11) : 4227 - 4240