Systematic improvements in transmon qubit coherence enabled by niobium surface encapsulation

被引:20
|
作者
Bal, Mustafa [1 ]
Murthy, Akshay A. [1 ]
Zhu, Shaojiang [1 ]
Crisa, Francesco [1 ,2 ]
You, Xinyuan [1 ]
Huang, Ziwen [1 ]
Roy, Tanay [1 ]
Lee, Jaeyel [1 ]
Zanten, David van [1 ]
Pilipenko, Roman [1 ]
Nekrashevich, Ivan [1 ]
Lunin, Andrei [1 ]
Bafia, Daniel [1 ]
Krasnikova, Yulia [1 ]
Kopas, Cameron J. [3 ]
Lachman, Ella O. [3 ]
Miller, Duncan [3 ]
Mutus, Josh Y. [3 ]
Reagor, Matthew J. [3 ]
Cansizoglu, Hilal [3 ]
Marshall, Jayss [3 ]
Pappas, David P. [3 ]
Vu, Kim [3 ]
Yadavalli, Kameshwar [3 ]
Oh, Jin-Su [4 ]
Zhou, Lin [4 ]
Kramer, Matthew J. [4 ]
Lecocq, Florent [5 ,6 ]
Goronzy, Dominic P. [7 ]
Torres-Castanedo, Carlos G. [7 ]
Pritchard, P. Graham [7 ]
Dravid, Vinayak P. [7 ,8 ,9 ]
Rondinelli, James M. [7 ]
Bedzyk, Michael J. [7 ,10 ]
Hersam, Mark C. [7 ,11 ,12 ]
Zasadzinski, John [2 ]
Koch, Jens [10 ,13 ]
Sauls, James A. [14 ]
Romanenko, Alexander [1 ]
Grassellino, Anna [1 ]
机构
[1] Fermi Natl Accelerator Lab FNAL, Superconducting Quantum Mat & Syst Div, Batavia, IL 60510 USA
[2] IIT, Dept Phys, Chicago, IL 60616 USA
[3] Rigetti Comp, Berkeley, CA 94710 USA
[4] US DOE, Ames Lab, Ames, IA 50011 USA
[5] NIST, Boulder, CO 80305 USA
[6] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA
[7] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[8] Northwestern Univ, NUANCE Ctr, Evanston, IL 60208 USA
[9] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
[10] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[11] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[12] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
[13] Northwestern Univ, Ctr Appl Phys & Superconducting Technol, Evanston, IL 60208 USA
[14] Louisiana State Univ, Hearne Inst Theoret Phys, Dept Phys & Astron, Baton Rouge, LA 70803 USA
关键词
All Open Access; Gold; Green;
D O I
10.1038/s41534-024-00840-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a transmon qubit fabrication technique that yields systematic improvements in T 1 relaxation times. We encapsulate the surface of niobium and prevent the formation of its lossy surface oxide. By maintaining the same superconducting metal and only varying the surface, this comparative investigation examining different capping materials, such as tantalum, aluminum, titanium nitride, and gold, as well as substrates across different qubit foundries demonstrates the detrimental impact that niobium oxides have on coherence times of superconducting qubits, compared to native oxides of tantalum, aluminum or titanium nitride. Our surface-encapsulated niobium qubit devices exhibit T 1 relaxation times 2-5 times longer than baseline qubit devices with native niobium oxides. When capping niobium with tantalum, we obtain median qubit lifetimes above 300 mu s, with maximum values up to 600 mu s. Our comparative structural and chemical analysis provides insight into why amorphous niobium oxides may induce higher losses compared to other amorphous oxides.
引用
收藏
页数:8
相关论文
共 10 条
  • [1] Coherence in a transmon qubit with epitaxial tunnel junctions
    Weides, Martin P.
    Kline, Jeffrey S.
    Vissers, Michael R.
    Sandberg, Martin O.
    Wisbey, David S.
    Johnson, Blake R.
    Ohki, Thomas A.
    Pappas, David P.
    APPLIED PHYSICS LETTERS, 2011, 99 (26)
  • [2] Transmon qubit in a magnetic field: Evolution of coherence and transition frequency
    Schneider, Andre
    Wolz, Tim
    Pfirrmann, Marco
    Spiecker, Martin
    Rotzinger, Hannes
    Ustinov, Alexey, V
    Weides, Martin
    PHYSICAL REVIEW RESEARCH, 2019, 1 (02):
  • [3] Coherence and Decay of Higher Energy Levels of a Superconducting Transmon Qubit
    Peterer, Michael J.
    Bader, Samuel J.
    Jin, Xiaoyue
    Yan, Fei
    Kamal, Archana
    Gudmundsen, Theodore J.
    Leek, Peter J.
    Orlando, Terry P.
    Oliver, William D.
    Gustavsson, Simon
    PHYSICAL REVIEW LETTERS, 2015, 114 (01)
  • [4] Wiring surface loss of a superconducting transmon qubit
    Smirnov, Nikita S.
    Krivko, Elizaveta A.
    Solovyova, Anastasiya A.
    Ivanov, Anton I.
    Rodionov, Ilya A.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [5] Surface loss calculations and design of a superconducting transmon qubit with tapered wiring
    Martinis, John M.
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [6] Surface loss calculations and design of a superconducting transmon qubit with tapered wiring
    John M. Martinis
    npj Quantum Information, 8
  • [7] Developing a Chemical and Structural Understanding of the Surface Oxide in a Niobium Superconducting Qubit
    Murthy, Akshay A.
    Das, Paul Masih
    Ribet, Stephanie M.
    Kopas, Cameron
    Lee, Jaeyel
    Reagor, Matthew J.
    Zhou, Lin
    Kramer, Matthew J.
    Hersam, Mark C.
    Checchin, Mattia
    Grassellino, Anna
    dos Reis, Roberto
    Dravid, Vinayak P.
    Romanenko, Alexander
    ACS NANO, 2022, : 17257 - 17262
  • [8] Extending the Quantum Coherence of a Near-Surface Qubit by Coherently Driving the Paramagnetic Surface Environment
    Bluvstein, Dolev
    Zhang, Zhiran
    McLellan, Claire A.
    Williams, Nicolas R.
    Jayich, Ania C. Bleszynski
    PHYSICAL REVIEW LETTERS, 2019, 123 (14)
  • [9] Enhancing the Q-Factor of a Practical Qubit Niobium Three-Dimensional λ/4-Resonator Through Surface Treatment
    Kutsaev, Sergey, V
    Agustsson, Ronald
    Araujo-Martinez, A. C.
    Broun, D. M.
    Carriere, P.
    Chou, M. H.
    Chouinard, T. S.
    Cleland, A. N.
    Frigola, P.
    Kelly, Michael P.
    Krasnok, A.
    Matavalam, N.
    Moro, A.
    Povey, Rhys Geoffrey
    Reid, T.
    Smirnov, A. Y.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2024, 34 (02) : 1 - 9
  • [10] Plasma Enabled Conformal and Damage Free Encapsulation of Fragile Molecular Matter: from Surface-Supported to On-Device Nanostructures
    Alcaire, Maria
    Aparicio, Francisco J.
    Obrero, Jose
    Lopez-Santos, Carmen
    Garcia-Garcia, Francisco J.
    Sanchez-Valencia, Juan R.
    Frutos, Fabian
    Ostrikov, Kostya
    Borras, Ana
    Barranco, Angel
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (36)