Surface loss calculations and design of a superconducting transmon qubit with tapered wiring

被引:0
|
作者
John M. Martinis
机构
[1] Quantala,
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Analytical formulas are presented for simplified but useful qubit geometries that predict surface dielectric loss when its thickness is much less than the metal thickness, the limiting case needed for real devices. These formulas can thus be used to precisely predict loss and optimize the qubit layout. Surprisingly, a significant fraction of surface loss comes from the small wire that connects the Josephson junction to the qubit capacitor. Tapering this wire is shown to significantly lower its loss. Also predicted are the size and density of the two-level state (TLS) spectrum from individual surface dissipation sites.
引用
收藏
相关论文
共 50 条
  • [1] Surface loss calculations and design of a superconducting transmon qubit with tapered wiring
    Martinis, John M.
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [2] Wiring surface loss of a superconducting transmon qubit
    Smirnov, Nikita S.
    Krivko, Elizaveta A.
    Solovyova, Anastasiya A.
    Ivanov, Anton I.
    Rodionov, Ilya A.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [3] Design and Performance Analysis of Hexagonal Transmon Qubit in a Superconducting Circuit
    Park, Seong Hyeon
    Bang, Jeseok
    An, Soobin
    Hahn, Seungyong
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2021, 31 (05)
  • [4] Bulk and surface loss in superconducting transmon qubits
    Dial, Oliver
    McClure, Douglas T.
    Poletto, Stefano
    Keefe, G. A.
    Rothwell, Mary Beth
    Gambetta, Jay M.
    Abraham, David W.
    Chow, Jerry M.
    Steffen, Matthias
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2016, 29 (04):
  • [5] Investigating Surface Loss Effects in Superconducting Transmon Qubits
    Gambetta, Jay M.
    Murray, Conal E.
    Fung, Y. -K. -K.
    McClure, Douglas T.
    Dial, Oliver
    Shanks, William
    Sleight, Jeffrey W.
    Steffen, Matthias
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2017, 27 (01)
  • [6] Controlling the spontaneous emission of a superconducting transmon qubit
    Houck, A. A.
    Schreier, J. A.
    Johnson, B. R.
    Chow, J. M.
    Koch, Jens
    Gambetta, J. M.
    Schuster, D. I.
    Frunzio, L.
    Devoret, M. H.
    Girvin, S. M.
    Schoelkopf, R. J.
    PHYSICAL REVIEW LETTERS, 2008, 101 (08)
  • [7] Measurement of Quasiparticle Diffusion in a Superconducting Transmon Qubit
    Dong, Yuqian
    Li, Yong
    Zheng, Wen
    Zhang, Yu
    Ma, Zhuang
    Tan, Xinsheng
    Yu, Yang
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [8] Direct manipulation of a superconducting spin qubit strongly coupled to a transmon qubit
    Pita-Vidal, Marta
    Bargerbos, Arno
    Zitko, Rok
    Splitthoff, Lukas J.
    Grunhaupt, Lukas
    Wesdorp, Jaap J.
    Liu, Yu
    Kouwenhoven, Leo P.
    Aguado, Ramon
    van Heck, Bernard
    Kou, Angela
    Andersen, Christian Kraglund
    NATURE PHYSICS, 2023, 19 (08) : 1110 - +
  • [9] Direct manipulation of a superconducting spin qubit strongly coupled to a transmon qubit
    Marta Pita-Vidal
    Arno Bargerbos
    Rok Žitko
    Lukas J. Splitthoff
    Lukas Grünhaupt
    Jaap J. Wesdorp
    Yu Liu
    Leo P. Kouwenhoven
    Ramón Aguado
    Bernard van Heck
    Angela Kou
    Christian Kraglund Andersen
    Nature Physics, 2023, 19 : 1110 - 1115
  • [10] Magnetic-Field-Compatible Superconducting Transmon Qubit
    Kringhoj, A.
    Larsen, T. W.
    Erlandsson, O.
    Uilhoorn, W.
    Kroll, J. G.
    Hesselberg, M.
    McNeil, R. P. G.
    Krogstrup, P.
    Casparis, L.
    Marcus, C. M.
    Petersson, K. D.
    PHYSICAL REVIEW APPLIED, 2021, 15 (05)