Center cyclicity of a family of quartic polynomial differential system

被引:0
|
作者
Isaac A. García
Jaume Llibre
Susanna Maza
机构
[1] Universitat de Lleida,Departament de Matemàtica
[2] Universitat Autònoma de Barcelona,Departament de Matemàtiques
关键词
Center; polynomial vector fields; Bautin ideal; cyclicity; limit cycle; 37G15; 37G10; 34C07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the cyclicity of the centers of the quartic polynomial family written in complex notation as z˙=iz+zz¯(Az2+Bzz¯+Cz¯2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{z} = i z + z \bar{z}\big(A z^2 + B z \bar{z} + C \bar{z}^2 \big),$$\end{document}where A,B,C∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A,B,C \in \mathbb{C}}$$\end{document}. We give an upper bound for the cyclicity of any nonlinear center at the origin when we perturb it inside this family. Moreover we prove that this upper bound is sharp.
引用
收藏
相关论文
共 50 条