Center cyclicity of a family of quartic polynomial differential system

被引:0
|
作者
Isaac A. García
Jaume Llibre
Susanna Maza
机构
[1] Universitat de Lleida,Departament de Matemàtica
[2] Universitat Autònoma de Barcelona,Departament de Matemàtiques
关键词
Center; polynomial vector fields; Bautin ideal; cyclicity; limit cycle; 37G15; 37G10; 34C07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the cyclicity of the centers of the quartic polynomial family written in complex notation as z˙=iz+zz¯(Az2+Bzz¯+Cz¯2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{z} = i z + z \bar{z}\big(A z^2 + B z \bar{z} + C \bar{z}^2 \big),$$\end{document}where A,B,C∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A,B,C \in \mathbb{C}}$$\end{document}. We give an upper bound for the cyclicity of any nonlinear center at the origin when we perturb it inside this family. Moreover we prove that this upper bound is sharp.
引用
收藏
相关论文
共 50 条
  • [1] Center cyclicity of a family of quartic polynomial differential system
    Garcia, Isaac A.
    Llibre, Jaume
    Maza, Susanna
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (03):
  • [2] LIMIT CYCLES BIFURCATING FROM THE PERIOD ANNULUS OF A UNIFORM ISOCHRONOUS CENTER IN A QUARTIC POLYNOMIAL DIFFERENTIAL SYSTEM
    Itikawa, Jackson
    Llibre, Jaume
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [3] The center problem and the composition condition for a family of quartic differential systems
    Zhou, Zhengxin
    Romanovski, Valery G.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (15) : 1 - 17
  • [4] Center conditions for a polynomial differential system
    A. P. Sadovskii
    T. V. Shcheglova
    Differential Equations, 2013, 49 : 151 - 165
  • [5] Center Conditions for a Polynomial Differential System
    Sadovskii, A. P.
    Shcheglova, T. V.
    DIFFERENTIAL EQUATIONS, 2013, 49 (02) : 151 - 165
  • [6] Cyclicity of polynomial nondegenerate centers on center manifolds
    Garcia, Isaac A.
    Maza, Susanna
    Shafer, Douglas S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (11) : 5767 - 5808
  • [7] CYCLICITY OF A CLASS OF POLYNOMIAL NILPOTENT CENTER SINGULARITIES
    Garcia, Isaac A.
    Shafer, Douglas S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (05) : 2497 - 2520
  • [8] The center and cyclicity problems for quartic linear-like reversible systems
    da Cruz, Leonardo P. C.
    Romanovski, Valery G.
    Torregrosa, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190
  • [9] Existence of Limit Cycles for a Class of Quartic Polynomial Differential System Depending on Parameters
    Abdullah Qadha, Sarah
    Qadha, Muneera Abdullah
    Chen, Haibo
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [10] Center conditions for a lopsided quartic polynomial vector field
    Salih, N
    Pons, R
    BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (05): : 369 - 378